Hard and Soft System Intentionality

Hermínio Duarte-Ramos

Systemic Complexity for human development in the 21st century Systemic Complexity: new prospects to complex system theory

7th Congress of the UES Systems Science European Union Lisbon, Dec. 17-19, 2008

All content on this website (including text, photographs, audio files, and any other original works), unless otherwise noted, is licensed under a Creative Commons License.

ShareAlike

This work is licensed under the

Creative Commons

Attribution-NonCommercial-NoDerivs

License

Ce travail est protégé par une licence Creative Commons

(559 Nathan Abbott Way, Stanford, California 94305, USA)

au profit de l' **UES**

Union Européenne de Systémique

Il peut être copié et distribué gratuitement, uniquement dans un but non-commercial, mais sans modification, et à condition que soit indiqués It can be copied and distributed, only in a non-commercial purpose, but without modification, and provided with the indications of

the origin/la source : http://afscet.asso.fr/resSystemica/Lisboa/DuarteRamosLisboa08Lecture.pdf

the title/le titre : Hard and Soft Systems Intentionality. (slides presentation)

the author/l'auteur : **DUARTE-RAMOS Herminio**

the pages/la pagination : 46 p.

the year/l'année : 2008

& the book/la publication: 7th Systems Science European Union Congress Proceedings,

Lisboa, Portugal.

Attribution Non-Commerciale, Partage À l'Identique Urhebernennung, Nicht-kommerziell, Gegenseitigkeit Atribución No comercial, Compartir en igualdad Atribuição Não-Comercial, Partilha em Igualdade

1. Basic Principles

Space

natural world

environment

System

is an organizing structure with several functional componentes and signal interactions within a virtual or real boundary pursuing an adaptive operation according to its own intentionality towards a *purpose* or **telonomy** emerging as an action

3. General Theory of Systems

Reality

is composed of

material objects

and

immaterial signals

3. General Theory of Systems

Systemic essentials

- acrony
- axony
- aquadry
- adaptacy
- telonomy

composition by functional components interactivity between components by signals frame boundary of the strict functional structure process adaptation to the working conditions quintessence as emergence from intentionality

Traditional system configurations: series, parallel, feedback

- acrony
- axony
- aquadry
- adaptacy

a + chronos = not time
axon = axis

a + quadra = not square

adaptatione = adaptation

Adaptacy

Adaptacy

- acrony
- axony
- aquadry
- adaptacy
- telonomy

telos = end, aim

5. Fixed Telonomy

A lamp is structured to light out

A lamp has a fixed telonomy

5. Fixed Telonomy

acrony: biological sensitive system and central nervous system

axony: brain-mind supervenience and mind-brain subvenience

aquadry: variant neural configurations

adaptacy: self-adaptative body-mind

Simple simplex system: material structure

Complicated simplex system: electric grid

Simplex system:

definite acrony complete axony certain aquadry determined adaptacy expected telonomy

Complex system:

incomplete axony
uncertain aquadry
undetermined adaptacy
unexpected telonomy

Simple complex sytem: electron

Complicated complex system: air navigation

Simplexity

characterizes simplex systems possess hard intentionality reveals fixed telonomy

Complexity

characterizes complex systems possess soft intentionality reveals flexible telonomy

8. Telonomy gap

- system intentionality = theoretical telonomy desired output, potential output
- system response = practical telonomy concrete output, real output
- telonomy gap = telonomy intentionality

9. Telonomy and Emergence

9. Telonomy and Emergence

emergence is:

expected telonomy in simplex systems

unexpected telonomy in complex systems

10. Degree of complexity

System complexity (physics)

is quite different from

computational complexity (maths)

10. Degree of complexity

System complexity degree:

.1st order: lacking of acrony

2nd order: lacking of axony

3rd order: lacking of aquadry

. 4th order: lacking of adaptacy

Problems:

- a priori assential gaps are not clear
- a posteriori observations reveal troubles to purify the systemic model

11. Soft Intencionality in Humans

Systemic cognitive model

11. Soft Intencionality in Humans

Systemic cognitive model

11. Soft Intencionality in Humans

process-signal of the mind

12. Hard Intentionality in Robots

12. Hard Intentionality in Robots

inteligence:

human "reads" a solution among infinite possibilities using flexible telonomy, soft intentionality

intelegence:

robot "elects" a solution
among finite possibilities
using fixed telonomy, hard intentionality

13. Human-Machine Systems

Inteligent-Non-intelegent system:

Inteligent-Intelegent system:

14. Soft Intentionality in Collective Systems

individual system:

a few, different components

colective systems:

many, repeated components

14. Soft Intentionality in Collective Systems

Electron motion in a rod

Thermal motion

Thermal and drift motion

14. Soft Intentionality in Collective Systems

15. Complexity of Dual Motions

Zen philosophy says: a signal negation creates a new signal

15. Complexity of Dual Motions

Car line movement

16. Intrinsic and Extrinsic Intentionality

Engineering systems:

designed with fixed telonomy
have intrinsic hard intentionality
in univariable systems
and multivariable systems

Humans:

created with flexible telonomy
have intrinsic soft intentionality
in strong personalities
and extrinsic soft intentionality
in weak personalities

17. Intentionality and Ethics

Machine manual (hard intentionality)

performance guide rules

Human ethics (soft intentionality)

behavioral guide norms

Human-Machine (inteligence-intelegence)

guide rules to integrate

18. Systemic Theory

fixed telonomy: emergent action

flexible telonomy:

emergent action

Hard and Soft System Intentionality

Hermínio Duarte-Ramos