
Systemic Complexity for human development in the 21st century
Systemic Complexity : new prospects to complex system theory

7th Congress of the UES Systems Science European Union Lisbon, Dec. 17-19, 2008

This work is licensed under the

Creative Commons
Attribution-NonCommercial-NoDerivs

License
Ce travail est protégé par une licence

Creative Commons
(559 Nathan Abbott Way, Stanford, California 94305, USA)

au profit de l' association

 APOCOSIS
ISBN: 978-972-9059-05-6

Il peut être copié et distribué gratuitement, uniquement dans un but non-commercial,

mais sans modification, et à condition que soit indiqués
It can be copied and distributed, only in a non-commercial purpose, but without

modification, and provided with the indications of

the origin/la source : http://www.afscet.asso.fr/resSystemica/Lisboa08/legrand.pdf

the title/le titre : Spreadsheets, systemics and simulations .
the author/l'auteur : LEGRAND Jacky
the pages/la pagination : 10 p.

the year/l'année : 2008
& the book/la publication: 7th Systems Science European Union Congress Proceedings,

 Lisboa, Portugal.

Attribution Non-Commerciale, Partage À l’Identique
Urhebernennung, Nicht-kommerziell, Gegenseitigkeit

Atribución No comercial, Compartir en igualdad
Atribuição Não-Comercial, Partilha em Igualdade

APOCOSIS Associação Portuguesa de Complexidade Sistémica Faculty of Science & Technology, Lisbon
Spreadsheets & simulations, Jacky LEGRAND p. 0 / 10

 1

Spreadsheets, systemics and simulations

Jacky Legrand
Université Paris 2

legrand@u-paris2.fr

Abstract

Spreadsheets are especially dedicated for answering any "what-if" question and are considered mindtools
for decision making. More, their simulation capabilities introduce necessarily a systemic dimension.
Although spreadsheet simulation programs may revolutionize systems study, our systems science
literature searches have revealed no studies paying them a little attention.
The aim of this paper is to redress the balance. Here is a case for spreadsheets as a practical support in
systems thinking. We advocates for a widespread use of computing and graphical demonstration among
non-programmers systemic researchers.
Some personal demonstrations suggest the power of simulation through a holistic behaviour emerging in
a cells range from a distributed definition. Further, concrete situations of circularity (feedback) and
recurrence (loops) are exemplified in an attempt to examine the most favoured fields of systems
simulation.

Keywords: end user programming, simulation, spreadsheet, user interfaces, visualization systems.

1. Introduction

System science combines theoretical and practical approaches. Among practical displays,
a system as such sets problems of observation and simulation. Within the constructivist
approach, the simulation phase implies challenging the model, system-dynamics analysis,
unexpected behaviour emerging, cheap scenarii building.

Spreadsheets have been used by accountants for hundreds of years. The first
computerization dates from the early 1960's 1. The microcomputer age spreadsheet of Daniel
Bricklin and Robert Frankston dates from the late 1970’s 2.

Since the introduction of VisiCalc, electronic spreadsheets turned out to be the highest
uptake of personal computer usage in modern business and the most widely used decision
support tool.

Of all end-user programming applications, spreadsheets are without a doubt the most
pervasive and successful applications of personal computers.

In the rest of the paper, we use "spreadsheeting", for short, instead of "practice of building
a spreadsheet model".

Spreadsheeting is an extremely popular and pervasive form of end-user programming in
business as well as throughout a very broad range of applications. Three exotic sample
applications may be mentioned to illustrate the diversity: football modelling [5], historico-military
modelling [7], and water allocation for irrigation [1], [2]. This last example advocates for
spreadsheet prototyping. Before the use of Agent-Based Models as a collective decision support
system, a spreadsheet is laid out to raise discussions.

1 Richard Mattessich, "Budgeting Models and System Simulation", The Accounting Review, July 1961,

p. 384-397.
2 The idea came to Bricklin while he was working on a MBA degree at the Harvard Business School in

1978 and the first advertisement for VisiCalc appeared in the May 1979 issue of Byte.

 2

In spite of the presence of spreadsheets as a prevalent part of the decision in businesses
they have received less research and a very little academic attention.

Are noticeable exceptions, the ongoing researches:

– about visualization from the visual language community [8];
– from the software engineering community attempting to provide tools and methodologies

to enforce a systematic development of spreadsheets [4], [6], [12] 3;
– about Computer Assisted Teaching via spreadsheets [11];
– about human factors and human-computer interaction [10].

The main motivation for this paper arises from the fact that although spreadsheets are
ubiquitous there is still no interest in the field of systems science.

Section 2 tries to impress upon systems scientists that spreadsheeting makes possible to
play "what-if" simulations. In the rest of the paper, we show, using three sample applications of
spreadsheets, how to take benefit from spreadsheet-based simulations.

Section 3 presents the "spreading-emerging" paradigm, section 4 presents the "circularity-
feedback" paradigm and section 5 presents the "recurrence-loop" paradigm.

2. The case for spreadsheeting in systemics

Although end-user programming has become a widespread phenomenon, although
spreadsheets have proven to be a highly versatile, user-friendly and successful tool, it is
surprising that this new computational paradigm seems to have been neglected in the systems
thinking community. Systems scientists shy away from spreadsheeting 4.

The paradox explanation may stay in the following dichotomy: either the results are
systems thinking prospective (efficient simulation is not on the agenda) or the results are from
fields where the systemic approach is practiced without being stated (efficient simulation has
been done with usual tools of the field).

A spreadsheet has the following critical role: when the user alters cells, all affected
dependent cells are redisplayed with new values computed during the "spread" updating.

The results of alternative configurations (effect of changes) are immediately visible. The
user explorations are known as "what-if" (what would happen) calculations.

In addition, any change to the values is readily viewed when it results in an immediate
change in the created graphs or charts.

A software for analyzing "what-if" situations deserves more in forecasting future events
rather than in "accounting" for the past.

We believe that an unprecedented amount of simulation power, a direct browsing through
the alternatives, the facility to display the data graphically and a graphical interface for input and
immediate feedback are critical advantages for systems scientists.

Spreadsheeting is available on virtually every computer in any laboratory or at home and
they have no need to learn programming in the conventional sense. They can develop a model
in a layout, that is natural to them, more effectively, reliably and in shorter time. They may find it
more convenient to progress in a step-wise fashion during simulation. They develop a more
concrete understanding of the model through a realistic behaviour of an abstraction of the
system. Adventurous colleagues will even experiment to exploit their understanding with
modifying the formulae.

3 See also the conferences of the European Spreadsheet Risks Interest Group : www.eusprig.org
4 Only one paper claims its use since the 1rst System Science European Congress held in 1989

(Schwartz & al. CES6 Paris 2005).

 3

important note : Although most commercial packages arrive equipped with a whole
macro language which constitutes a complete programming language, the very
meaning of this paper restricts spreadsheets to the original, inherent and essential
paradigm.
The required competence for admission here is a basic understanding of copy-and-
paste action implying formulae with fixed and relative cell references.

3. Spreading and Emergence

It was back in 1984 (the year of Excel for Macintosh) that Alan Kay [9] 5 points out that
arguably spreadsheets might be used for a variety of novel programming and should take their
place with the status they really have.

According to his academic non-numerical setting (a histogram using figurative cells and no
graphical interface), spreadsheeting is not only a "wordprocessor for numbers". A range of cells
is an aggregate of concurrently active agents. A global result may emerge from their immediate
and simultaneous behaviour.

Although his example is a simple one, it illustrates how a range, filled with a unique
formula describing a local behaviour, may exhibit a global emerging behaviour.

We suggest expanding the idea to a day-to-day schedule in a resource planning.
The parameters are : the production rate (quantity produced during one unit of time), the

beginning of the labour day, the length of one time period as a quantity of time unit and the
number of slices dividing one day (in practice, the number of cells used to represent the maximal
work done in one day). Fours cells named respectively "production_rate", "begin", "time_period"
and "slicing" are used for the parameters.

An intermediate cell (named "valcell") is used to compute the work that can be done during
one period of time: production_rate * time_period.

Each day of the week is a column. The whole week is a range where one cell is
representative of the activity of the period. Below the range, a row is used to quantify the targets
of production (each day receives a target).

Each row of the range is preceded by a label explaining the period of the day. The text of
the label is a formula since it depends on the number of periods and on the length of the period.
The smart solution is to use 3 columns to get a label like X "to" Y, where X and Y are adequate
formulae.

The formula uses the beginning of the day, the length of a period and the vertical number
(relative coordinate) of the row of the label.

We can now generate the X column (from A1 to A13) using Fill Up copy with the following
example formula (row 13 as the first row), A13:

=IF(13-CELL("row";A13)+1<=slicing;begin+(13-CELL("row";A13))*(time_period);" ")

In Excel, the "Cell" function is used to retrieve information about a cell, the "row" argument
is used to get the vertical number (absolute coordinate) of the cell.

The Y column (from C1 to C13) is generated using Fill Up copy with the following example
formula (row 13 as the first row), C13:

=IF(13-CELL("row";C13)+1<=slicing;begin+(13-CELL("row";C13))*(time_period)+(time_period);" ")

5 This highly cited paper is not so far ahead of his time, see for example [13].

 4

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

A B C D E F G H I J

17 to 20
14 to 17
11 to 14
8 to 11

MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY SATURDAY

targets 110 199 42 70 200 20

slicing 4
time_period 3 valcell 30
begin 8
production_rate 10

Figure 3.1: schedule template.

The dynamical labels as a copy of one and only one formula is by itself a noticeable
introduction to the key result. The sheet is ready for the emergence demonstration.

The shadowed area (see Figure 3.1) receives the distributed definition of the schedule
organized into a rectangular array of similar cells. Any cell will have the same behaviour i.e. the
same formula. The formula will formalize how one cell "reacts" to its "neighbourhood": target
below, period on left, eve and overnight workload.

A cell in the range devoted to the planning is "highlighted" when the period it represents is
(totally or in part) "busy" (mandatory to produce target at hand).

The targets may exceed the number of periods allocated to one day.
A different pattern must be used when a cell applies to the work performed outside the

normal working period (A.W. for Additional Work). The number of A.W. cells represents the
number of missing labour periods.

Since it is a natural desire to move the extra work over an unoccupied period, we introduce
an additional sophistication.

The "free" cells may detect the additional work in the next column (the day tomorrow).
They code the opportunity to get ahead in the work with a different pattern: "ahead".

The "overloaded" cells may detect "free" cells in the previous column (the day before).
They code the opportunity to get rid of extra work with a different pattern: "done".

In order to sum up the behaviour of our "agent-cell" we suggest the following decision tree

Is the cell a "working" cell?
yes
is it outside of the labour periods ?
 yes
 can get ahead the day before ?
 yes
 "done"
 no
 "A.W"
 no
 standard pattern

no
is it inside of the labour periods ?
 yes
 additional work the day tomorrow ?
 yes
 "ahead"
 no
 clear contents
 no
 clear contents

The described behaviour will be extended into as many subsequent cells as we wish using

Fill Up and Fill Right copy (up a column and along the rows to the entire range) of the following
example formula (row 13 as the first period of Monday), E13:

 5

=IF((13-CELL("row";E13))*valcell<E$15;
 IF(13-CELL("row";E13)+1>slicing;
 IF(INT((E$15-1)/valcell)-(13-CELL("row";E13))+1<=slicing-INT((D$15-1)/valcell)-1;"done";"A.W");1);
 IF(13-CELL("row";E13)+1<=slicing;
 IF(13-CELL("row";E13)-INT((E$15-1)/valcell)<=INT((F$15-1)/valcell)-slicing+1;"ahead";"");""))

The output is the following (see Figure 3.2):

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

A B C D E F G H I J

 A.W done
 A.W A.W
 A.W A.W

17 to 20 ############ ############ ahead ############
14 to 17 ############ ############ ############ ############
11 to 14 ############ ############ ############ ############ ############
8 to 11 ############ ############ ############ ############ ############ ############

MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY SATURDAY

targets 110 199 42 70 200 20

slicing 4
time_period 3 valcell 30
begin 8
production_rate 10

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

A B C D E F G H I J

 done done
 done A.W

16 to 20 ahead ############ ahead ############
12 to 16 ahead ############ ############ ############ ############ ############
8 to 12 ############ ############ ############ ############ ############ ############

MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY SATURDAY

targets 20 199 42 70 70 200

slicing 3
time_period 4 valcell 40
begin 8
production_rate 10

Figure 3.2 :
schedule test in case of 4 periods of 3 hours

Figure 3.3 :
schedule test in case of 3 periods of 4 hours

To change the day slicing, we modify E15 in the sheet. To lengthen or shorten the day, we

modify E18 in the sheet. Targets may be also modified to get immediately a new output (see
Figure 3.3).

Our academic realization allows a dynamically updated simulation of a global emerging
solution, the definition of which is distributed all over the sensitive range.

4. Feedback and circularity

During spreadsheeting some cells depending on themselves (through direct or indirect

references) are usually entered by mistake. Nevertheless, circular references may be created
when simulating models that involve feedback loops. Circularity is desirable and the solution is
computed iteratively.

For situations that require carrying on circularity anyway, a user-checkable option enforces
the iteration while a user-selectable limit (maximum change between two consecutive iterations
or automatically bounded iteration loop) enforces termination.

Our example shows a spreadsheet containing two circular cross-references. Its purpose is
to iteratively compute the solution of a system of two equations. The equations are laid out so
we can get the estimators (, ) of a simple linear regression. We have no room here for a
tutorial 6 about this analysis of the relationship between two observed variables, X and Y, that
finds the best straight line (Y = X+) through a scatter plot.
We choose an academic exercise because the key is outside of the solved problem. The key is
the tool for solving.

We will focus on the two estimators (, ) cells ("alpha", "beta") solving the equations that
minimize the sum of the squares of the vertical distances of the observed values from the
straight line.

As a preliminary step, it is necessary to enter the observed values, Yi and Xi, two columns
are used, the sums of which are named "sumX" and "sumY". One of the columns is used to
compute the number of values which is named "nbval". A sequence of intermediate formulae is
introduced in the adjacent columns to compute:

– the Xi * Yi, the sum of which is named "sumXY";
– the Xi

2, the sum of which is named "sumsqX".

The cells named "alpha" and "beta" receive the equations to be solved:

6 The reader in need may see any undergraduate statistics textbook or grasp the concept in a glimpse
with a full text search in the help menu of his(her) preferred "office suite" package.

 6

– alpha = sumXY-beta*sumX)/sumsqX;
– beta = (sumY-alpha*sumX)/nbval.

With the estimators it is possible to compute in an additional column the estimated values,
i.e. the  Xi +.

We recommend experiencing such coupled formulae in the manual calculation mode of
the spreadsheet (Excel offers Tools-Options-Calculation Tab – Manual check box and F9
keystrokes to progress). The stepwise convergence is enhanced.

Linear regression

0,000

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

0,000 0,500 1,000 1,500

X

Linear regression

0,000

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

0,000 0,500 1,000 1,500

X

Figure 4.1: before drag and drop. Figure 4.2: after drag and drop.

The visual demonstration is fully realized with the help of the chart wizard. The figure 4-1

presents the scatter plot of the Yi as a function of Xi. The observed values are married, on a
common graphical output, with the scatter plot connecting the estimated values with a straight
line.

Since charts are dynamically linked, each iteration automatically redraws the straight line
when the convergence of "alpha" and "beta" is experienced.

The actual data have been chosen to be a nasty sample with an adjustment of bad quality.
The left top point is a good example of aberrant data. Since it is possible to update a cell’s
contents by using the mouse to change the position of a plotted point, we can drag the aberrant
point and drop it on the straight line. The iteration process will adjust the new estimators and,
consequently, the chart (see Figure 4.2).

5. Loops and Recurrence

We suggest here how to represent recurrences and to use a graphical output to
experiment with solutions. By the way a system dynamical model is being calculated using a
simple spreadsheet.

We choose the representation of the Lotka-Volterra predator-prey model [3], [14].
The model considers two populations: the preys (Pro(t) is the density of preys at t) and the

predators (Pre(t) is the density of predators at t). The feeding of predators rests totally on the
preys. The only augmentation and diminution factors are:

– growth of preys proportional to the number of preys, Pro(t) (independent of Pre(t));
– destruction of preys proportional to the number of predators, Pre(t) (independent of

Pro(t));
– growth of predators proportional to the number of preys, Pro(t) (efficiency at turning food

into offspring);

 7

– mortality of predators proportional to the number of predators, Pre(t) (no internal
competition).

The "progression" of the two populations against time may be formulated as a coupled pair
of first order, non-linear, differential equations:

dPro(t) / dt = *Pro(t) – *Pro(t)*Pre(t)
dPre(t) / dt = – *Pre(t) + *Pro(t)*Pre(t)

where  is the growth rate of prey,  is the predation rate coefficient,  is the predator
mortality rate and  is the rate at which predators increase by consuming prey.

We assume that we know the initial conditions of the equations at time t0.
An implemented recurrent method is a numerical approximation of the differential

equations. The Euler method is the simplest recurrence used for the discrete analytic solution of
differential equations but least accurate (effects of the cumulative errors generated in each
step). We prefer another recurrence: the fourth order Runge-Kutta for which the solution is not
obvious.

Let Pro and Pre be the current values for, respectively, preys and predators populations,
the next element of the prey sequence is computed with the formula:

(K1Pro + 2*K2Pro + 2*K3Pro + K4Pro) / 6
where K1Pro, K2Pro, K3Pro, K4Pro are computed with the formulae :

K1Pro = alpha*Pro – beta*Pro*Pre
K2Pro = alpha*(Pro + K1Pro/2) – beta*(Pro + K1Pro/2)*(Pre + K1Pre/2)
K3Pro = alpha*(Pro + K2Pro/2) – beta*(Pro + K2Pro/2)*(Pre + K2Pre/2)
K4Pro = alpha*(Pro + K3Pro) – beta*(Pro + K3Pro)*(Pre + K3Pre)

The next element of the predator sequence is computed with the formula:
(K1Pre + 2*K2Pre + 2*K3Pre + K4Pre) / 6
where K1Pre, K2Pre, K3Pre, K4Pre are computed with the formulae:

K1Pre = – gamma*Pre + delta*Pro*Pre
K2Pre = – gamma*(Pre + K1Pre/2) + delta*(Pre + K1Pre/2)*(Pro + K1Pro/2)
K3Pre = – gamma*(Pre + K2Pre/2) + delta*(Pre + K2Pre/2)*(Pro + K2Pro/2)
K4Pre = – gamma*(Pre + K3Pre) + delta*(Pre + K3Pre)*(Pro + K3Pro)

Let spreadsheet column A contains the values for discrete time. The first row is used for
titles. The second row is used for initial values. The parameters, alpha, beta, gamma and delta
are named cells anywhere, close to the initial values. The K1 to K4 coefficients may be hidden in
8 columns, from H to O. The predators and preys are placed down a column range, two cells
wide, in columns B and C. We use row 3 as the first row and give the spreadsheet formulae in
B3 and C3:

B3: =B2+(H2+2*I2+2*J2+K2)/6 C3: =C2+(L2+2*M2+2*N2+O2)/6

With the following formulae in H2 to O2:

H2: =alpha*B2 - beta*B2*C2
I2: =alpha*(B2 + H2/2) - beta*(B2 + H2/2)*(C2 + L2/2)
J2: =alpha*(B2 + I2/2) - beta*(B2 + I2/2)*(C2 + M2/2)
K2: =alpha*(B2 + J2) - beta*(B2 + J2)*(C2 + N2)
L2: = -gamma*C2 + delta*B2*C2
M2: = -gamma*C2 + delta*B2*C2
N2: =-gamma*(C2 + M2/2) + delta*(C2 + M2/2)*(B2 + I2/2)
O2: =-gamma*(C2 + N2) + delta*(C2 + N2)*(B2 + J2)

Fill Down copy is an easy means to propagate formulae downward, we generate 500 rows.
Each time-step is represented in a single row. This example show how much faster
spreadsheeting can obtain the same results as a traditional programming

For concreteness, and as a hint to Volterra, we start with 1 hundred sharks as predators,
400 hundreds sardines as preys and the coefficients  = 0.05 ,  = 0.04 ,  = 0.03 ,  = 0.0001
are used.

 8

The periodic solutions are plotted as successive points to observe the progression over
time on Figure 5.1. The simultaneous graphs (a normalization facilitates a common graphical
output), using shark and sardine ranges, emphasize the oscillatory nature of the population of
the two species, the predator curve follows that of prey by /4.

1 61 121 181 241 301 361 421 481 541 601 661 721 781 841 901 961 1021 1081 1141 1201 1261 1321 1381 1441

PREYS

PREDATORS

POPULATIONS EQULIBRIUM AND FOUR REGIONS

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

0 50 100 150 200 250 300 350 400 450 500

Figure 5.1: periodic evolution of the populations. Figure 5.2: phase space diagram.

On Figure 5.2 we plot the shark population as a function of the sardine population with the

changing variable being time. The output result is a phase space diagram. The trajectories are
elliptical closed lines.

The phase space diagram is divided into four regions by the lines where each species is
constant. The two lines intersect where both populations remain unchanged (Pre =  / , Pro = 
/ ).

0

0,2

0,4

0,6

0,8

1

1,2

0 100 200 300 400 500 600 700
0

0,5

1

1,5

2

2,5

3

3,5

0 100 200 300 400 500 600 700 800
Figure 5.3:

To simulate a second species of predator
*2 is the new predation rate coefficient

Result : least environmental impact on preys,
interesting!

Figure 5.4:
To simulate an increase of live births for

preys
*1.5 is the new growth rate of prey :

Result : average population of preys is constant
while average population of predators increases,

unlucky !

The workbook allows the user to generate different increases for populations, to observe

the impact when formulae are recomputed and to view, at the same time, the graphical
simulation when the chart is redrawn.

 9

0

0,5

1

1,5

2

2,5

0 50 100 150 200 250 300 350 400 450
0

0,2

0,4

0,6

0,8

1

1,2

0 100 200 300 400 500 600 700 800
Figure 5.5:

To simulate a better reproduction of
predators

*1.5 is the new rate at which predators
increase :

Result : decrease of preys population but
invariability of predators population,

it missed !

Figure 5.6:
To simulate hunting of predators and
disrupting reproduction of preys
/2 is the new growth rate of prey :
*2 is the new predator mortality rate

Result : decrease of predators and increase of
preys,

exciting topic for system thinking !

The model is “animated” by spreadsheets. Our implementation displays intermediate

results, the user manipulates the data and can instantly and graphically see what changes.

6. Remarks, Critics and Conclusion

When it would take far too long to create an application, the nature of the spreadsheet as a
prototyping tool is a crucial advantage. However, can a spreadsheet program be considered as
software? Does a spreadsheet program suffer from several limitations? Spreadsheets combine
ideas from powerful programming languages. It is possible to compare the spreadsheet
paradigm with the other programming paradigms.

We do not choose to take a theoretical perspective to argue that the pure spreadsheet
language (as used in this paper) is equivalent to general purpose languages.

All programming paradigms are essentially equivalent, but who wants to use a Turing's
machine? From this point of view, how spreadsheeting fundamentally differs from conventional
programming is obvious at first glance: friendly user interface and instant modelling power are
the special nature of spreadsheets.

Any problem that can be solved with a spreadsheet can also be solved with another
computer program. "what–if" explorations are perhaps more efficient according to the
conventional programming wisdom. What it lacks is speed in obtaining results.

Conversely, when is solved on a spreadsheet, how clear is it that a viable solution is
obtainable? What it lacks is guaranty of effectiveness and verifiability 7.

Spreadsheets also have their share of problems which typically go unnoticed. The first
significant deficiency is a perceived simplicity with which large tasks can be achieved. The
second one is the “buried in the formula” logic of the creator, the documentation of the model is
largely inaccessible.

A spreadsheet program is obviously software and thus should enforce a systematic
development and then meticulous tests.

Nonetheless, it is to the systems scientists’ advantage to rule out some particular
simulation through simple conventional programming code (VBA or any else). A blend of pure

7 See for example: Kellie B. Keeling , Numerical accuracy issues in using Excel for simulation studies,

Proceedings of the 36th conference on Winter simulation, 2004, p. 1513-1518.

 10

spreadsheets with macros language facilities is not excluded. Spreadsheets are also connected
to databases and can import or export the data.

There remain a whole number of interesting research questions, some of which we have
addressed. We would be delighted to hear from systemics researchers thinking about
spreadsheeting.

References

[1] Géraldine Abrami, «Niveaux d'organisation dans la modélisation multi-agent pour la gestion de

ressources renouvelables», PhD thesis ENGREF, Montpellier, France, 29 novembre 2004.
[2] Olivier Barreteau, «Modèles et processus de décision collective: entre compréhension et facilitation de

la gestion concertée de la ressource en eau», HDR Thesis Dauphine, Paris, 2007.
[3] Nicholas F. Britton, Essential Mathematical Biology, Springer, 2004, 370 p.
[4] Martin Erwig, Robin Abraham, Irene Cooperstein, Steve Kollmansberger, «Automatic generation and

maintenance of correct spreadsheets», Proceedings of the 27th International Conference on Software
Engineering, St. Louis, MO, 2005, p. 136-145.

[5] Alain Fernandez, «Représentation des actions en jeux sportifs collectifs», Colloque international
scientifique DREEPS IUFM & UFR-STAPS, Nice, France, 16-19 décembre 1998.
http://www.unice.fr/ufrstaps/colloque_antibes/Fernandez/Ferna2.htm

[6] Marc Fisher, Gregg Rothermel, Darren Brown, Mingming Cao, Curtis Cook, Margaret Burnett,
«Integrating automated test generation into the WYSIWYT spreadsheet testing methodology», ACM
Trans. on Software Engineering and Methodology, Issue 2(15), April 2006, p. 150-194.

[7] Dean S. Hartley, «The Oak Ridge Spreadsheet Battle Model», Proceedings of the 22nd conference on
Winter simulation, New Orleans, LA, 1990, p. 863-869.

[8] T. J. Jankun-Kelly, Kwan-Liu Ma, «A spreadsheet interface for visualization exploration», Proceedings
of the conference on Visualization, Salt Lake City, UT, October 2000, p. 69-76.

[9] Alan Kay, «Computer Software», Scientific American, Issue 251(3), September 1984, p. 41-47.
[10] Albert Napier, Richard Batsell, David Lane, Norman Guadagno, «Knowledge of command usage in a

spreadsheet program», ACM SIGMIS Database, Issue 1(23), Winter 1992, p. 13-21.
[11] Jeff Parker, «Teaching complexity via spreadsheets», Journal of Computing Sciences in Colleges,

Issue 5(23), May 2008, p. 83-89.
[12] Kamalasen Rajalingham, David Chadwick, Brian Knight, Dilwyn Edwards, «Quality Control in

Spreadsheets: A Software Engineering-Based Approach to Spreadsheet Development», Proc. of the
33th Hawaii Int. Conference on System Sciences, Maui HI, January 2000, p. 4006-4015.

[13] Richard M. Reese, «Simulation programming using spreadsheet software», Proceedings of the 16th
conference on Winter simulation, Dallas, Tx, 1984, p. 538-542.

[14] Yasuhiro Takeuchi, Global Dynamical Properties of Lotka-Volterra Systems, World Scientific
Publishing Company, 1996, 302 p.

