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Résumé : Les entreprises agissantes en période de concurrence dynamique doivent équilibrer l'efficacité et 
l'innovation. La science de complexité est une approche interdisciplinaire à des systèmes qui produisent ces deux 
qualités d’une manière émergente. Ces systèmes s’appellent systèmes adaptatifs complexes. Sur la base des résultats 
de la science de complexité concernant les phénomènes émergents, nous développons dans cet article un modèle 
général de systèmes adaptatifs complexes pour l’utilisation dans la gestion d’entreprise. Ce modèle montre les 
instruments qui évoquent des effets émergents. À l'aide de notre modèle, nous examinons des applications existantes 
de la science de complexité à différents niveaux de l’entreprise. Nous analysons les effets émergents souhaités et les 
instruments utilisés pour les obtenir. Nous montrons que notre modèle peut aider à soutenir les processus 
d’émergence dans les entreprises. 
 
Abstract : Companies acting in times of increasingly turbulent competition have to permanently balance efficiency 
and effectiveness. Complexity science provides an interdisciplinary theoretical approach for studying systems that 
emergently exhibit these two properties. Such systems are called complex adaptive systems. In this paper we 
propose a generic framework of complex adaptive systems in management science that is based on complexity 
science’s theoretical insights on emergence. The framework shows the levers of emergence in firms. We use it to 
examine examples from the literature that apply ideas from complexity science to different organizational levels. 
Applying our framework to each example, we analyze the desired emergent properties and the corresponding levers 
of emergence. We conclude our framework serves to both analyze and integrate efforts to support processes of 
emergence in companies. 
 
1 Introduction  
Companies in many industries are acting in turbulent environments, in which conditions 
permanently change, competition increases, and foresight is limited to the very near future. In 
the face of such turbulences, two problems become especially urgent.  
First, the characteristics of turbulent environments make it difficult to manage firms top-down. 
This accounts for management science’s increasing interest in bottom-up approaches, some of 
which are based on the idea of emergence.  
Secondly, in turbulent environments the old dilemma between efficiency and effectiveness is 
pressing. Firms can achieve short term success by improving efficiency. However, in order to 
successfully survive in changing business landscapes in the long run, they have to be innovative. 
Hence, it is crucial to permanently balance the conflicting forces of efficiency and effectiveness. 
A final solution to this dilemma is still pending. 
 

In recent years there has been a growing literature on how to resolve these two problems by 
applying insights from the field of complexity science. Complexity science provides an 
interdisciplinary theoretical approach for studying large systems that exhibit emergence, for 
example ant colonies, ecosystems, big cities, bird flocks or markets. The term “emergence” 
describes the generation of macro-level system properties arising from micro-level interactions 
of system elements without being planned or foreseen. Complexity science searches for common 
underlying principles of such systems that are called complex adaptive systems (Gell-Mann, 
1995). It has its roots in e.g. systems theory, evolutionary biology, game theory and information 
science.  
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According to complexity science, complex adaptive systems (CASs) typically show two kinds of 
emergent properties: emergence of innovation due to evolution over time and emergence of 
spontaneous order. Furthermore, they exhibit adequate combinations of these emergent 
properties. This is why CASs are able to emergently change, adapt and (co-)evolve in harmony 
with their changing environments. Hence, emerging properties make CASs sustainable as a 
whole although such systems generally do not have a system-level control. 
 

As these characteristics of CASs perfectly match with the requirements of companies in today’s 
turbulent environments, management science has shown increasing interest in CASs recently. 
Many books and papers have been published that apply principles of CASs to firms in order to 
generate emergent properties. Applications cover the entire span of organizational levels and a 
broad scope of goals.  
Nevertheless there is still a gap between CAS theory from complexity science and CAS 
applications to firms. Complexity science uses simple computer-based models to explain the 
basic underlying mechanisms of emergence in CASs in a very general and abstract way. In 
contrast, applications of CAS principles to firms mostly address very specific problems on 
selected organizational levels, without seeing the organization as a whole. In other words: while 
CASs offer a valuable new theoretical perspective on emergence in general, their application to 
management science still suffers from a lack of integration and is too fragmented to yield 
practical results. 
 

In this paper we propose a generic framework of complex adaptive systems in management 
science that shows the levers of emergence in firms. In order to develop this framework, we first 
give a brief outline on CAS models used to explain emergence. Based on these results we 
propose our framework. We then use this management-science CAS framework to analyze and 
evaluate examples from the literature transferring ideas from complexity science to management 
science. We examine exemplary applications on four organizational levels: the individual 
resource level, the organizational sub-unit level, the organizational level and the network level. 
Applying our framework to each application, we analyze the desired emergent properties and the 
corresponding levers of emergence used. 
As a result, we show that there is a wide range of CAS applications to firms with different focus. 
Typically they address either emergent innovation or emergent order and thus fail to combine 
effectiveness and efficiency. We conclude our framework may serve to integrate such 
applications towards a better understanding of firms’ levers of emergence. 
 
2 Models of Emergence in Complex Adaptive Systems 
This section briefly summarizes characteristics of CASs and prominent models of emergence. 
There are two kinds of emergent properties in CASs: spontaneous order accounting for 
efficiency and flexibility, and innovative evolution. Complexity science uses abstract computer-
based models to study these emergent phenomena in CASs. 
 

2.1  Basic Characteristics of Complex Adaptive Systems 
A CAS is a network of elements, whose interactions cause the emergence of overall system level 
properties. Real examples of complex adaptive systems are ecosystems, bird flocks, ant colonies, 
the nervous system or man-made systems like industries or big cities. Although very different in 
detail, CASs have common characteristics (for different models of CASs, see e.g. Holland, 1995; 
Gell-Mann, 1995; Kauffman, 1993; Auyang, 1998). Basic components of a CAS are active 
elements, called agents (Holland, 1995). Agents can combine to meta-agents which, in turn, can 



form even more aggregated agents, a CAS can be an agent of a network, and so forth: CASs can 
form a (temporary) structure following a “box-in-a-box” principle (Simon, 1996). Each agent 
acts according to an individual set of rules that is called schema (Holland, 1995). An agent has a 
limited number of direct interaction partners. The self-organization of interacting agents gives 
rise to emergent phenomena in a CAS.  
 

2.2  Models of Emergent Order 
Cellular automata are widely used to study the emergence of spontaneous order in rule-based 
systems. They are computer-based spatial systems of cells that change their state (e.g. black-
white) according to a given transformation rule. This rule determines a cell’s next state 
dependent on the actual states of a number of neighbouring cells. This way spatial patterns 
unfold over time. Depending on the rules, different static or dynamic patterns emerge (Wolfram, 
1994; Wolfram, 2002).  
Boolean networks (Kauffman, 1993) are a second class of models of emergent order. In these 
models agents are mutually linked Boolean functions that form a network. According to 
Kauffman (1993) self-organized Boolean networks settle to attractors that can either be chaotic, 
or frozen, or balanced states with both stable clusters and changing regions. In this balanced state 
on the so-called “edge of chaos” a network reaches a maximum in information processing 
capacity, it can display spontaneous order and absorb external disturbances (Langton, 1992). The 
character and diversity of the functions used and the number of their inputs determine whether a 
Boolean network operates on the edge of chaos. 
Another prominent model of rule-based interaction is called “boids”. In this computer based 
simulation of a bird flock three rules, concerning speed, distance, and relative flight direction, 
control the motion of the individuals called boids. (Reynolds, 1987). Based upon these rules, 
boids show bird-like behaviour in forming flocks and performing flight manoeuvres. Although 
boids are uniform agents with a fixed set of rules for interaction, the bird flock as a whole can 
react to unforeseen disturbances like obstacles in the way. This kind of emergent order is known 
as “swarm intelligence” (Bonabeau, Dorigo, & Theraulaz, 1999). 
 

2.3  Models of Emergent Innovation and (Co-)Evolution 
NK models (Kauffman, 1993) are used in complexity science to study evolution and innovation. 
Agents in these models consist of N elements (e.g. properties, genes, or other attributes). Each 
element can take on two different values, 0 or 1. To each of the two values of every one of the N 
elements a fitness contribution is (randomly) assigned. Agents can evolve and improve their 
overall fitness by switching values of elements one by one, in a process called “adaptive walk”. 
A fitness landscape visualizes the overall fitness function. There are three different types of 
fitness landscapes: single-peaked landscapes with one global fitness maximum, multi-peak 
landscapes with random peaks, and moderately rugged landscapes with correlated peaks (see 
Figure 1). 
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Figure 1: Types of fitness landscapes 
 

As the direction of an adaptive walk has to be uphill per definition, in single-peaked landscapes 
adaptive walks always lead to the global maximum, whereas in a multi-peak landscape they end 
on the local maximum nearest to the starting point. Once the agent has reached a local peak it 
cannot improve any more, although there might be a higher peak in some other region of the 
fitness landscape. Diversity eventually evolves in a population of formerly identical agents when 
their random adaptive walks take different directions. 
 

The parameter K in NK models affects the shape of the fitness landscape. K is the number of 
epistatic links between the N attributes of an agent, that is the number of other elements 
influencing that attribute. If the fitness contributions of the N elements are independent (K=0), 
the agent’s overall fitness equals the sum of all N fitness contributions. In this case improvement 
in one element improves the agent’s overall fitness likewise. Thus, a single-peaked fitness 
landscape is generated. In contrast, if the fitness contribution of an element depends on the value 
of K others, a landscape with more peaks is formed. The number of peaks increases with K. 
 

Coupling of agents results in coevolution, when evolving agents affect each other. In coevolution 
an agent’s fitness landscape is not static, but it may change with every step another agent takes. 
In other words, the ground is moving. This can be a disadvantage for agents walking in single-
peaked landscapes, as they might never reach the moving peak. For agents stalled on lower 
peaks in multi-peak landscapes however, a landscape change may put them off that local peak 
and into a new starting position. Therefore, in a coevolutionary scenario moderately rugged 
fitness landscapes (K=2) are most advantageous for individual agents.  
 

To study coevolution, NK models are extended to NKSC models (Kauffman, 1993), where S is 
the number of species coevolving and C is the number of links between each pair of species. 
These parameters determine external complexity, just as K determines internal complexity. 
Coupled CASs coevolve to the edge of chaos, with a maximum average fitness of agents and a 
dynamic stability of the overall system, when internal and external complexity are balanced. 
 



3 A Generic Framework of Complex Adaptive Systems in Management 
Science 

In real CASs, like biological systems, there is no system-level control and thus there is no 
intentional system design. These systems emergently self-organize and evolve towards the edge 
of chaos, where average fitness and chance of system survival reach their maximum. In abstract 
CAS models however, conditions for self-organizing agents can be deliberately set. From the 
previous section a number of interdependent properties of CASs can be identified that are 
prerequisites for emergence in these systems. We first give a short summary of these levers of 
emergence and then merge them to characteristics of companies in order to develop a generic 
framework for levers of emergence in firms. 
 

3.1  Levers of emergence in Complex Adaptive Systems 
Complexity science’s experiments with evolutionary models, cellular automata, Boolean 
networks and other rule-based interaction systems reveal that a set of parameters act as levers of 
emergence in such systems: 
Agents: As stated above, agents are the core elements of complex adaptive systems. When 
designing a CAS, agents have to be defined adequately. In a general definition, an agent is an 
active element of a CAS. Agents interact with one another based on a set of rules. In many CAS 
models, agents are simple switches.  
Properties: In the models used in complexity science agents’ properties or attributes are often 
conceptualized as a number of elements that can take on different states or values. NK models 
show that the number of elements and the number of links between these elements influence 
emergence. 
Diversity: Agents in a CAS can be uniform or diverse in their properties and rules. Diversity 
evolves from self-organization when agents are adaptive, with each agent adapting individually 
to its local network or niche, as in the NK models. In contrast, diversity can be set by shaping 
properties and rules of agents in a system where agents are fixed and non-adaptive, as in the 
boids model. 
Action rules: Rules are a prominent part of agents’ properties. Action rules describe information 
processing procedures. In complexity science’s models, rules are Boolean functions or other 
mathematical algorithms. Emergence in Boolean networks depends on the character and 
diversity of the functions used and the number of links between agents. If these two parameters 
are set properly, dynamic structures emerge in a network. Interacting agents can form 
(temporary) meta-structures, depending on their interaction rules and the number of their 
interaction partners. These aggregated agents can act as agents themselves. This way, a CAS 
shows a “box-in-a-box” structure. 
Change rules: Rules, properties, and links in a CAS structure can be fixed or subject to changes 
made by adaptive agents. For agents to be adaptive, change rules have to be defined in order to 
get variations in agent properties, links and rules. The adaptive walk implemented in NK models 
is a change rule that allows agents to change one property at a time. 
External links: The number of external links connecting an agent with others characterizes the 
density of the resulting network. Experiments with cellular automata and Boolean networks 
demonstrate that, depending on the density, agents’ self-organization processes and the 
emergence of effects on the overall system level will be rather supported or blocked respectively. 
External links account for coevolutionary dynamics in a system of coupled adaptive agents. 
Internal links: The number of internal or epistatic links is a measure of an agent’s internal 
complexity. When an agent’s properties are coupled via internal links, their contributions to the 



agent’s overall fitness are not independent; this way a change in one property can affect fitness 
contributions of others, too. Fitness landscape models are used to characterize change processes 
of adaptive agents. These agents perform hill-climbing adaptive walks in their individual fitness 
landscapes, each trying to reach a point of maximum fitness. Depending on the shape of the 
fitness landscape, which in turn is influenced by internal links within the agent, adaptive walks 
will be more or less successful. As agents are linked to each other via external links, their fitness 
landscapes are coupled, too. As a result, an agent’s fitness landscape gets dynamic with 
coevolution. Landscape peaks shift when changes in other agents occur.  
 

3.2  Levers of Emergence in Firms 
In the following we propose a generic framework of CASs for use in management science. Firms 
differ from the CAS models described above as they have a system-level control on different 
organizational levels. Hence, their characteristics often are subject to deliberate intervention 
rather than random change. This is why we add two levers of emergence to those identified in 
the previous section: First, we see fitness landscapes as one of the levers of emergence in firms. 
Whereas complexity science assumes fitness landscapes to be set randomly by internal links, 
goal-setting is an important activity in management. Secondly, aggregation of agents is a crucial 
management task. Whereas agents in CAS models self-organize to form temporary structures 
and meta-agents, organizational structure in firms is defined and changed by management. 
In the following we give an overview of the resulting nine levers of emergence in firms. Put 
together, these form a generic framework of emergence in complex adaptive systems in 
management science, as proposed in Figure 2.  
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Figure 2: A generic framework of complex adaptive systems in management science 

 
1. Agents: In management science, agents’ equivalents can range from individuals to firms. 
Their classification depends on the purpose of CAS applications. 
2. Aggregated Agents: In management science such aggregations can be e.g. departments or 
networks. In most cases they don’t form by themselves, but they are defined by management. 
3. Agents’ Properties: Relevant properties of agents depend on the application purpose and the 
nature of the agents. CAS models reveal that the number N of properties is important. 



4. Action Rules: In a CAS all agents’ interactions are based on rules. Action rules describe an 
agent’s information processing procedures. In firms, they range from simple if-then-rules to 
mental models in human decision-making.  
5. Change Rules: If agents are allowed to change on their own initiative, they need change rules. 
In firms, change is usually restricted in terms of resources, scale, scope etc. 
6. Diversity: Diversity evolves from learning and self-organization or diversity is set by shaping 
agents’ properties and rules, e.g. by staffing teams or by allocating different resources to 
production lines. 
7. External Links: Depending on the density of the agents’ network, self-organization processes 
and the emergence of qualities on a higher level will be rather supported or blocked respectively. 
A company’s external links are e.g. communication links, or interfaces in production processes, 
or customer relationships. 
8. Internal Links: Internal complexity affects the potential overall system fitness. Firms can 
actively design internal complexity, for instance by reducing internal links with the help of 
product and process modularization. According to the box-in-a-box organization of CASs, the 
definition of internal and external links depends on the level of observation. 
9. Fitness Landscapes: Fitness landscapes in management science can be e.g. incentive systems, 
or performance measurement systems. In addition, organizations can affect their own fitness 
landscapes by establishing external links to partners and competitors, and by designing internal 
complexity. 
 
4 Using the Generic Framework to Analyze Business Applications of CASs 
CASs have been applied to a number of management science problems on different 
organizational levels, ranging from individual to industry level. Beside the differences in 
application levels there are also differences in objectives: Whereas some of the transfer concepts 
stress emergence of efficiency, others aim at emergent innovation. In the following, we 
distinguish four organizational levels - the individual resource level, the organizational sub-unit 
level, the firm level and the network level. Starting with the individual level, for each level we 
examine two exemplary applications of CAS principles with different focus and objectives. 
 

4.1  Individual Resource Level 
On the individual resource level (R), insights from CASs are adopted to explain the emergence 
of knowledge, culture, or meaning. For instance, “memes” (Dawkins, 1989), that are society’s 
equivalent of genes, can be seen as agents that interact to build culture or knowledge. Agents can 
be e.g. ideas, scientific theories, or pieces of music. They are located in individuals where they 
compete for attention (Marion, 1999; Blackmore, 2001). This concept is based on the diversity 
of agents and on selective fitness landscapes.  
The concept of complex responsive processes (Stacey, 2001) focuses on the interaction 
processes that enhance the emergence of knowledge. Here agents are elements of knowledge, 
called symbols. Meaning is ascribed to these symbols via interaction and communication 
processes. In this view, knowledge is an emergent property of a communication process. Rules 
and internal links are the levers of emergence this concept addresses. 
 
4.2  Organizational Sub-Unit Level 
On the organizational sub-unit level (SU) there are some concepts that aim at emergent order and 
others that aim at emergent innovation. Applications aiming at emergent order and efficiency use 
swarm intelligence and agent-based systems (Bonabeau, Dorigo & Theraulaz, 1999; Macready 



& Meyer, 1999; Bonabeau & Theraulaz, 2000). The basic idea is to provide agents (that can be 
technical resources of any kind or even humans) with a fixed set of rules and objectives for their 
interaction and then let them self-organize according to the given rules. Properly set, the overall 
system will display emergent order, it will be robust in the face of disturbances and it will be 
able to respond to unforseen changes. Swarm intelligence is used in resource allocation 
processes to replace conventional optimization procedures that are of limited use when faced 
with dynamically changing problems. In these concepts agents and their properties as well as 
action rules are used as levers of emergence. 
Aiming at emergent innovation, Allen (1997; 2001) uses coevolutionary simulation models to 
study emergence of knowledge. Agents in these models can be either individuals or groups. 
Allen stresses the fact that learning opportunities and mistakes are sources of innovation when 
communication structures are shaped properly. In terms of levers of emergence, the concept thus 
focuses on diversity, external links and change rules. 
 

4.3  Firm Level 
On the firm level (F), there are applications similar to those on sub-unit level that use agent-
based systems to efficiently manage production processes. One application e.g. dynamically 
restructures a production-process layout using an agent-based system with mobile resources as 
agents (Wiendahl & Harms, 2001). 
However, most of the firm level applications aim at emergent innovation, e.g. in strategies, 
technologies, projects or organizational knowledge. Often they use NK models (Caldart & 
Ricart, 2004). One application links the emergence of strategies to organizational structure and 
information processing (Boisot & Child, 1999; Boisot, 2000). This concept uses diversity 
(cognitive complexity) and internal links (relational complexity) as levers of emergence. 
 

4.4  Network or Industry Level 
On the network level (N), applications use agent-based technologies to improve efficiency of 
interorganizational production and supply chain management. Other order-oriented applications 
analyze the emergence of industrial districts (Rullani, 2002). In all of these applications, agents 
are firms, and the emergent results of their interactions are efficient processes or structures. 
Action rules, external links and fitness landscapes serve as levers of emergence. 
In addition, CAS models aimed at innovation have been used on this level to foster competitive 
advantage. In a model-based application, Kauffman’s NKSC studies are applied to firms in 
coevolving networks (McKelvey, 1999), with a focus on balancing internal and external links.  
 
5 Discussion and Conclusion 
CASs exhibit emergent effects in terms of spontaneous order and innovative evolution. In this 
paper we sketched out basic ideas of CASs and proposed a generic framework for emergence in 
firms to analyze exemplary applications of CAS principles to different organizational levels (for 
an overview, see Figure 3). From this analysis we conclude that complexity science is not yet 
ready to offer a comprehensive bottom-up solution to the efficiency-effectiveness dilemma in 
turbulent environments for three reasons: 
1. Whereas in theory a CAS should be capable of both emergent order and emergent innovation, 
concepts transferring these findings into firms are fragmented into two basic streams: One 
stream attempts to make use of the self ordering properties of complex adaptive systems. 
Examples are applications of “swarm intelligence” and agent-based technologies. A second 
stream is based on NK models and strives to transfer insights concerning coevolution and 
emergent innovation of CAS to different organizational levels.  



2. Each application employs only a few out of the nine levers of emergence identified in our 
generic framework. None of them thus makes use of the full potential of a CAS.  
3. There are no multilevel models so far. Applications span a wide range of organizational levels. 
However, most applications take into account only two organizational levels, one agent level and 
another level where the desired emergent effects arise. 
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Figure 3: CAS applications on different organizational levels 

 
In spite of the shortcomings of CAS applications listed above, we observe two aspects in favour 
of a further CAS approach to emergence in firms: 
1. CASs can contribute to a deeper and integrative understanding of the multiple issues involved 
in emergence of innovation and efficiency on all organizational levels.  
2. For different organizational levels and specific problems applications of CAS principles 
already exist. Efforts towards integration should be undertaken. 
 
We conclude that complexity science is far from generating a ready-to-use concept to support 
emergence in management science. However, insights in CASs can reveal the necessary 
conditions to manage the conflicting forces of efficiency and effectiveness in today’s turbulent 
business environments with the help of emergent effects. The proposed generic framework of 
complex adaptive systems in management science may serve to analyze, evaluate and integrate 
CAS applications to firms, towards a better understanding of firm’s levers of emergence. 
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