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Abstract
Volumes described by primitive systems (in the
Kron’s meaning[8]) when their currents take all possi-
ble values, create manifolds. For various environment
conditions, parameters values change with time. It
means that previous manifolds change in forms when
the environment changes. To make a system, many
of these manifolds are used, glued each other. So,
when environment changes, the all structure is de-
formed. The purpose of this paper is to give some
track to translate mathematically these deformations
and to show how the metric incorporates the tran-
sition states and the meaning of these terms. Fi-
nally, we take a look on the curvature impact of these
impedance definitions. This discussion follows previ-
ous ones presented in [9][10][11].

1 Introduction
Even if it’s rarely specified, any impedance opera-
tor acts on given domains[1]. For example a re-
sistance follows the law U = RI only on a given
domain of temperature and current amplitude. If
the temperature is too high, the law can become
U = R0 (1 + ↵T ). Logistic functions are used to de-
fine the domain and attach each domain a various
law for one impedance operator. By the fact, the sys-
tem of equations coming from these impedances and

that describes the system can change of equations de-
pending on environment parameters. As a manifold
can be associated with each system of equations and
its domains, this mechanism leads to moving man-
ifolds[2]. But a system is made of various of these
manifolds. Finally the whole assembling of manifolds
moves when its environment changes.

2 Domains function

First step is to dispose of functions in order to be
able to write, for any operator z[3]:

zij =
X

n

Dnzij(n) (2.1)

this for one parameter. For m parameters, the re-
lation becomes:

zij =
X

n

⇧mDm
n zij(n) (2.2)

A kind of function that answer well to the require-
ments are the logistic functions[4]. For example, to
define on a domain [a, b] some parameter q driven
impedance, we can write:

⇣
1 + e�↵(q�a)

⌘�1

�
⇣
1 + e�↵(q�b)

⌘�1

(2.3)

Playing on delays and ↵, transition speed between
two laws can be set as desired, as the domain width.
Previous expression allows to obtain relations like
(2.1) or (2.2).
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3 Primitive manifold changing
We consider an impedance defined with domains.
This definition is linked with a curve giving for all
possible values or one variable xk the result em

through em =
P

n ⇧mDm
n zmk(n)xk, and this for one

set of values for the parameters (xk begin a gener-
alized flux - i.e. currents in the electrical case). If
the parameter values change, the impedance func-
tion changes and the previous curve becomes a set of
curve, i.e., a surface. This surface can be seen as a
manifold issued from a moving curve. As an exam-
ple, we make a program defining first the windows of
each domains, with two domains. In that case, we
consider only one parameter to make the illustration
simplest. Figure 1 shows the result obtained for the
domain windows.

Figure 1

Once the domains defined, we can use them to cre-
ate a parametrized impedance in two laws.

Let’s take for example next impedance law:

Z (i, R,↵) = Di
1Ri1 + Di

2R (1 + ↵i1) i1

Once defined this law, we can give i1 all possible
values in one context, for a given resistance R and
for various values of the parameter ↵.

Previous equation was drawn and gives the figure
2. First domain creates only one curve as it doesn’t
depend on any parameter. At the contrary, second

domain creates many curves that make the surface
seen on the figure.

Figure 2

It’s clear that depending on domain values, the
manifold associated with the law can change radically
of appearance.

4 Connecting primitive mani-
folds

Various of previous like manifolds can be glued in
order to create more complex ones[5]. The only con-
straints is to make in accordance the domains. If we
imagine two laws of definitions:

Z1 = D1Z
1
1 + D2Z

2
1 Z2 = D0

1Z
1
2 + D0

2Z
2
2

If we want to make the direct summation of the
two previous primitives, it gives:

Z = D1Z
1
1 + D2Z

2
1 + D0

1Z
1
2 + D0

2Z
2
2

It’s clear that domains should be equal to point out
same values of parameters coming from the environ-
ment conditions. Another possibility exists when do-
mains complete each other. For example: D0

1 +D1[ =
D00

1 . Note that one of the domain limit must be
open (private of the last value) in order to connect
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it continuously with the other one. We may write:
D00

1 = D1 \ [+D0
1. In both cases, direct summa-

tion becomes possible and has meaning. If one of
the impedance law doesn’t depends on limits, the di-
rect summation results from the classical addition of
the two original laws.

5 Impact on the second ge-
ometrization process

When impedance is written using such laws defined
on domains (restricted ones, which should be always
the case for real object), what is the consequence on
the second geometrization process? In other words,
how the metric will be expressed when these do-
maines come in square power?

We consider the system represented by the
impedance matrix:

Z =


D1A + D2B C

C D

�
(5.1)

Note that even if a current threshold intervene in
D, it is simplest to choose another current than the
current multiplied by this domain. In this case, when
computing the derivation to extract base vectors, the
result is directly the impedance operator itself. So,
previous matrix leads to the jacobian:

J =


D1A + D2B C

C D

�
(5.2)

under the hypothesis that A . . . D are all pure reals.
The metric coming from this jacobian is:

G =


(D1A + D2B)2 + C2 (D1A + D2B) C + CD

(D1A + D2B) C + CD C2 + D2

�

(5.3)
Due to its decomposition in domains, the first term

(without C2) can be developed in:

(D1A)
2

+ (D2B)
2

+ 2 (D1A · D2B)

Now in case of perfect differentiation in the do-
main, i.e. D1 · D2 = �12 = 0, the square is reduced to

the summation of the squares of each impedance do-
main. But this case is rarely a physical one. More, it
often leads to instability in numerical computations.
So, if we use a common interval to both domains D1

and D2 as previously, the product 2 (D1 · D2) AB is
different from zero. This term leads to a power P�

linked with the transition phases when the material
change of characteristics under environment parame-
ters. If K and Q are the two mesh currents, we have
for example:

P� = 2 (D1 · D2) AB.K2

So that the metric can be finally written: G + G�,
where G� integrates all the phase changes of the man-
ifold. Note that these transition states belong to each
primitive manifold and also to shared energy (extra-
diagonal element Gij , i 6= j) if any impedance law is
constructed under the domain formalism. Noting

Dij = Di · Dj (5.4)

some interactions can disappear or not depending
on the domain intersections, giving the metric a new
meaning: it gives a deep description of the distance
dependance versus the environment parameters. To
solve quite easily the problems, it’s clear that it’s
better when these parameters are not directly the
flux themselves.

6 Curvature
In one domain, the law can integrate a function that’s
depends on one current. For example: Z(D) = D1R+
D2R.K. In that case, first base vector could be (in a
three dimension space):

b1 =

2
4

D1R + D2R.K
b2

b3

3
5 (6.1)

where b2 and b3 are functions without currents.
Due to the component dependance with current,

b11 = @Kb1 exists. It means that Christoffel’s coeffi-
cients �11,i can exist. What does it means ? It means
that for some environment conditions, the base vector
b1 change with current K value. It’s component on
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the local TpS tangent plan bi are given by Christof-
fel’s coefficient[7]. In other words, from one location
to another db1 = �11,ibidKi.

If Christoffel’s coefficients exist, this is a testimony
that environment influence deeply the object behav-
ior. The dependance of space with currents translates
the fact that energy looks for a technique to compen-
sate a kind of saturation in energy distribution. It
translates also hysteresis phenomenons[6] in the sys-
tem behavior. Remanent processes are involved and
modify space characteristics that creates base vector
evolution depending on the currents. In a general
consideration, these effects always exist for any sys-
tem. Linearities are approximations for limited do-
main definition of the impedances. It corresponds to
limited definition of the manifolds.

7 Conclusion

Domains defined through logistic functions gives
general and accurate definitions of systems, using
impedance functions. It leads to manifold point of
view of these systems where material disappear be-
hind equations and their curves that gives a new
view of the same systems. That was original Kron’s
idea[8]: to say that once equations are established
from the circuit schematic, this last one wasn’t use-
ful at all. Working on equations and linked manifolds
give all the available information to decide of actions
of modification to apply to the circuit and to under-
stand its behavior.
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