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Résumé.

Cet article présente quelques ré�exions sur la signi�cation et la compréhension

que l'on peut se faire du vecteur de Poynting quand celui-ci comporte des ter-

mes imaginaires. Pour cela on s'appuie sur une représentation d'une ligne sous

le formalisme de l'analyse tensorielle des réseaux, puis on transforme la ligne en

une succession de cellule réactive se transmettant de proche en proche l'énergie

électromagnétique. Ce processus s'apparente à une quanti�cation. Ensuite, en

regardant comment le même mécanisme se comporte dans un milieu à pertes

on voit le sens du vecteur de Poynting dans de tels milieux.

Abstract

Poynting's vector leads to real value coming from the product of the electric

�eld amplitude with the magnetic �eld amplitude conjugated. We can assimi-

late the light propagation with a lossy line. The input of the line behaves like a

real load. It translates the dissipation of Poynting's energy in free space. But

this lossy line can be itself compared with a sequence of resonators. In each of

these resonators, we can see imaginary energies stored. One electrical energy

stored in the capacitor and one magnetic energy stored in the self inductance.

This kind of approach can be seen as a quanti�cation process. Starting from

this fact we can de�ne complex Poynting's vector as a transportation from

point to point of imaginary stored energy and no more as a real one. We �-

nally develop this reasoning by trying to make a link between both de�nition

of Poynting's vector.

Mots-clés : Poynting's vector, losses media.

1 Cette contribution soumise à Res-Systemica fait suite à une discussion avec le Professeur

Ali Moharrer de l'université de Louisiane.
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Introduction
Poynting's vector comes from Maxwell's equation. When we take a look to the demon-

stration, Poynting's vector explains the energy going out a volume of stored and �uing

energy. But it doesn't detail how the energy is distributed before to be received far from

the source by another system. A question can be to look inside this transmission of energy

to understand what is the nature of the �eld inside this channel? After that we can hope

making some link between the real dissipation of radiated energy that leads to Poynting's

vector and the kind of energy inside its transmission.

1) Poynting's vector
Like Jackson, we start from conservation of energy. The product P = qv.E is equivalent

of a current per meter multiplied by the electric �eld P = idx.E. As J.S = i, this leads

to P = J.Sdx.E. Finally:

(1) P =

∫

v

dx3J · E

This power must be balanced by the electromagnetic energy stored in the near volume

around the currents. We use Maxwell's equations for making appear the �eld attached

with the currents.

(2) P =

∫

v

dx3J · E =

∫

v

dx3
[
∇×H− D

dt

]
· E

Both term inside the bracket can be multiplied by E. Then using the canonical identity

:

∇ · (E×H) = H · (∇× E)− E · (∇×H)

with (∇× E) = −∂tB we obtain :

(3) P =

∫

v

dx3J · E = −
∫

v

dx3
[
∇ · (E×H) + E · ∂D

∂t
+H · B

dt

]

At this step writing the stored electromagnetic energy u = 1/2 (E ·D+B ·H) and

S = (E×H) we can obtain the equation:

(4)
∂u

∂t
+∇ · S+ J · E = 0

This equation gives all the budget in electromagnetic energy �ux. We must �nd all the

forms of this energy: dissipation energy, stored energy and radiated one. We easily �nd:

1. the stored energy �ux associated with ∂tu ;


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2. the dissipated power associated with J · E ;

3. the radiated power associated with ∇ · S

S is Poynting's vector.

2) Lagrangian associated with the budget equation
Seeing equation 4 we can interpret it as the total power involved in a closed circulation

where the total potential energy is zero. So we can associated the equation with various

laws attached with branches in a graph. In this cellular topological approach, the cinetic

energy is associated with the mesh described by the close circuit, like the external sources.

The electric stored energy can be associated with a branch like the energy of dissipation.

A port presents a real impedance similar to a resistance and a dissipation, but represents

the radiated and lost energy. Figure 1 represents the graph we describe just before.

If J is the current that runs into the loop, the electric potential developed accross the

capacitive branch C (associated with the electric stored energy) is given by:

(5) uC =
1

C

∫

t

dtJ(t)

while the voltage developed accross the resistance is uR = R.J(t).

Figure 1: Closed circuit for lagrangian

If ζ is the impedance presented by the radiated energy between its two ports, the

potential developed is equal to uP = ζ.J . And �nally, adding the magnetic stored energy

and its potential uL we �nd the equation associated with the loop:

(6) uC + uR + uP + uL =
1

C

∫

t

dtJ(t) +R.J(t) + ζ.J(t) + L
dJ(t)

dt
= 0

This is Lagrange's equation associated with the circuit representation of the summa-

tion of energies of dissipation, electric stored energy, magnetic stored energy and radiated

energy.


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We want now to detail what is the signi�cance of z.

3) The input impedance of the radiated energy
The radiated energy can be seen as an in�nite guided waves, as no re�ected energy

can be measured in the input ports of the radiated energy.

This re�exion was already conduct by Feynman. We imagine an in�nite succession

of LC cells (L being an inductance and C a capacitance). Let's call the serie impedance

Z1 and the paralel impedance Z2. If Z0 is the impedance presented by all the network of

successive LC cells at its input Zi, adding Z0 in parallel to Z2 gives:

Zi = Z1 +
Z2Z0

Z2 + Z0

But as Z0 results from an in�nite succession of cells Z1 in serie with Z2, to add one cell

musn't change the input impedance. And so Zi = Z0. By replacing Zi by Z0 we obtain

the expression of Z0:

(7) Z0 =
Z1

2
+

√(
Z2

1

4

)
+ Z1Z2

The equation 1 gives the input impedance of an in�nite network of successive LC cells.

If we go back to the case where Z1 = Lp and Z2 = 1/Cp (p being Laplace's operator), we

obtain:

(8) Z0 =

√(
L

C

)
−
(
ω2L2

4

)

If ω < 2/
√
LC the input impedance behaves like a real resistance. But the inductance

and capacitance values for one cell are determined by:

L = Z0

v
dx C = 1

Z0v
dx

and so the pulsation w tends to in�nite. It means that a lossless line transports all

frequencies without attenuation.

The fact that the line presents a resistance for input impedance was also discussed by

Feynman in his course. The transmitted energy to the �rst cell, even if this cell is purely

imaginary is real in a �rst time. This is the energy necessary to charge the imaginary

impedances. Then this energy is transmitted to the next cell, etc. As the processus

continues until in�nite, no cells remains in a stored energy state and ithis appears like a

dissipative process.

The input impedance is called the characteristic impedance, given by:

Z0 =

√
L

C


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If we consider a line made of two parallel plates separated by a distance y and of width

W . The inductance and the capacitance can be approximated for one cell by:

L = µ0
ydx
W

C = ε0
dxW
y

so that:

Z0 =

√
L

C
=

√
µ0

ε0

y

W
= η0f

η0 being a wave impedance and f a geometrical function. But we have also:

E

B
= v0 ⇒

E

H
= µ0v0 =

√
µ0

ε0
= η0

v0 being the light speed in free space (µ0ε0)
−1 and the electric and magnetic �eld following

a trans-electromagnetic �eld like in a lossless line or in free space. Note that a lossless

line has zero resistance. It implies that in fact in this imaginary line there is no metallic

structures. Any metallic structure implies losses. Finally this line can be seen as a

particular mode of propagation where the �eld remains in a guided �nited location with

no angular dispersion. But seen from its input, the circuit doesn't know how the �eld

diverge after because of our assumption of in�nite propagation with no re�exions. It

doesn't change nothing in our minding to consider this lossless line or a perfectly matched

antenna, whatever the radiation diagram.

We want now to �nd the relation between Poynting's vector and the power dissipated

in radiation in our circuit. The instantaneous power dissipated on the radiation branch

is Pr = Z0J
2(t). We can develop this expression:

(9) Pr = η0fJ
2 =

E

H
fJ2

But in general we can write J = fBH where fB is a geometrical function. With f = fE/fB
we obtain:

(10) Pr = η0fJ
2 =

E

H

fE
fB

(HfB)
2 = EHfEfB

Now Poynting's vector by itself has no real meaning. What is really possible to be felt

and measured is its integral on the surface of radiation A:

(11) Pr =

∫

A

dA · S

Which can be written:


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(12) Pr = EH

∫

A

dA · dfE × dfB

In the case of guided waves, this leads to equation 10. And so, the power dissipated into

the line is a good representation of the Poynting's term in equation 4.

We can �nally redraw �gure 1, �gure 2.

Next step is to look at the line with some di�erent point of view. Each cell can be con-

sidered separately like a local �eld process with coupling functions with the neighbouring

cells.

Figure 2: Closed circuit for lagrangian with perfect line

4) Jumping from cells to cells
When we look at the line structure represented �gure 2, we recognize a periodic structure

where the inductance and the capacitance is always the same until the in�nite. Note

that we don't care of the length associated with each cell. Implicitely, it's a in�nitely

short length. Under the tensorial analysis of networks, the impedance matrix of such a

structure in the mesh space is this one (we limit its development to the �rst three cells):

(13) z =




Lp+ 1
Cp

− 1
Cp

0

− 1
Cp

Lp+ 2
Cp

− 1
Cp

0 − 1
Cp

Lp+ 2
Cp




The �rst cell is always di�erent because it constitutes the frontier with the circuit

connected to the line. The �rst inductance can be neglected compared to the inductance

of the circuit. If we associate a mesh to each cell in the line structure, next �gure 3 leads

to the same impedance matrix for the guided waves.

The di�erence here is that the line is made of separate cells, coupled through the

function −1/Cp, each cell being a purely LC one. And we know that such a LC circuit


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represents a resonator. Its working is in�uenced by the coupling to the neighbouring

cells. But before the coupling acts, it supposes that we were able to identify a part of

the radiated process like a local resonator. In accordance with the uncertainty principle,

we cannot say where this resonator is exactly. If we can locate it with accuracy, it means

that we don't know its resonance frequency. But in our abstract graph we can rigorously

establish this equivalence without saying where the cell is located, and understand more

clearly how the �eld goes from cell to cell.

We can now study the �eld characteristics inside this cell.

Figure 3: Closed circuit for lagrangian with perfect line with coupled cells

5) Field inside one cell
As one cell behaves like a resonator, it supposes that we were able to separate the �eld

energy in a litlle box of one half wavelength dimension. Inside this box, we can measure

a stored electric and magnetic �elds energy. When looking to equation 3, it means that

this portion of line doesn't represents the radiation any more, but here a local stored

energy. The radiation is reported by the coupling with all the other cells following the

one we study. Let's take a look to this process. The electromotice force ec coming from

the previous cell is:

ec = −
1

Cp

e0
Lp+ 2

Cp

= − e0
2 + LCp2

but p = jω and ω =
√
LC

−1
, and so:

ec = −e0
The impulse of the �eld is transmitted from cell to cell.

Now if we compute the power associated with the cell loaded by the characteristic

impedance Zc that represents all the following cells, we obtain, with the impedance matrix:

(14) ζ =




2
Cp

+ Lp − 1
Cp

− 1
Cp

1
Cp

+ Zc





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the total power (including all kind of energies) is:

(15) P = ζxyJ
xJy =

(
2

Cp
+ Lp

)
(J1)2 − 2

Cp
J1J2 +

(
Zc +

1

Cp

)
(J2)2

But like all the cells are identical, the current from cell to cell should be the same.

This imply that J1 = J2 = J and by replacement:

(16) P = LpJ2 +
1

Cp
J2 + ZcJ

2

We �nd a similar process as before, i.e. that Poynting's vector appears like a port of

dissipation through radiation connected to a resonator circuit. Poynting's vector remain

real in that case where the propagation medium is lossless.

6) Complex Poynting's vector
Starting from our succession of lossless cells we can introduce some losses with the

inductance. This translates the propagation in a lossy medium. It modi�es the impedance

matrix by adding a resistance r to the cell mesh and by modifying the characteristic

impedance function. It becomes:

Zc =

√
r + Lp

Cp

and the budget 15 is now:

(17) P =

(
Lp+

2

Cp
+ r

)
J2 +

√
L

C
+

r

Cp
J2

Noting Z0 =
√
LC−1 and ω0 =

√
LC

−1
the last term becomes:

(18)

[√
L

C
+

r

Cp

]
J2 =

[√
Z0

(
1− j rCω

2
0

ω

)]
J2

if the losses are su�ciently weak, i.e. rCω2
0ω
−1 → 0, this leads to:

(19)

[√
L

C
+

r

Cp

]
J2 = Z0

(
1− j 1

2

rCω2
0

ω

)
J2

We have seen that this term must conduct to Poynting's �ux through equation 12.

But here, it includes an imaginary part implying that Poynting's vector must be com-

pleted to present this kind of component. Or (because Poynting's expression is a story of


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convention) by keeping Poynting's vector as known and adding the imaginary part as an

added part coming from the losses in the medium of propagation. The added function is

not trivial. Like in a lossy line, we understand that the �elds are no more perpendicular

one to eachother, due to the electric �eld component created by the potential accross the

resistance, in other words, by the losses. This discussion was already made with another

more classical approach by Jackson.

7) Some values and conclusion
For dielectrics, the angle of losses is de�ned by tanδ = rCω. Equation 19 can be written:

(20) Z ′0 = Z0

[
1− j 1

2
tanδ

(ω0

ω

)2]

and for the modulus:

(21) |Z ′0| = |Z0|
[
1 +

1

4
tan2δ

(ω0

ω

)4] 1
2

For example if we consider paper, angle of losses can reach tanδ = 2.10−3 and εr = 6.

This leads to:

Z ′0 ≈ Z0

[
1 + 10−6

(ω0

ω

)4] 1
2

The ratio ω0/ω can be equal or inferior to 1. So that the amplitude of Poynting's vector

is here modi�ed by a factor (1 + 10−6)
1
2 . For glasses, the factor can reach 1, 005. But we

must be careful with these values, given for not well controled frequency gap. Anyway

these values show that Poynting's complex vector concerns before all metallic media.

As this kind of medium for the electromagnetic propagation is very particular, not to

say paradoxical, we understand that Poynting's vector is real in most cases.




