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TOWARDS A RELATIVISTIC INFORMATION THEORY
FOR PATTERN AND FORM !

Guy JUMARIE

Université du Québec 3 Montréal 2

Abstract

This paper outlines a theory of relative information (that is to
say with syntax and semantics) for pattern and form. Basically it
combines two results, i.e. the randomization technique which
previously provided us with a unified approach to discrete entro-
py and continuous entropy, and the so-called model of observa-
tion with informational invariance ; both of them are applied to
a classical equation of Shannon information theory. One so deri-
ves measures of relativistic uncertainty for stochastic continuous
processes and deterministic mappings, which are fully consistent
with practical experiments on the one hand, and with the concept
of fractal dimension on the other hadn. Prospects are outlined.

Résumé

Cet article définit les éléments d’une théorie relativiste de 1’infor-
mation (c’est-a-dire avec syntaxe et sémantique) contenue dans
une forme. Essentiellement, il combine deux techniques, 4 savoir
la méthode de randomisation qui nous permit d’obtenir une ap-
proche unifiée des entropies discrétes et continues, et notre mo-
déle d’observation avec invariance informationnelle ; elles sont
simultanément appliquées & une équation bien connue dans le
formalisme de Shannon. On obtient ainsi des mesures de P’incerti-
tude relative contenue dans une forme stochastique ou détermi-
niste, qui sont, par ailleurs, pleinement en accord des résultats
expérimentaux obtenus par d’autres chercheurs d’une part, et
avec la notion de dimension fractale d’autre part. On esquisse
ainsi un cadre qui pourrait permettre une étude générale des
formes.
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1. Introduction

Nyquist [17] is probably the first author who considered the pro-
blem of efficiency of transmission ; later Hartley [6] proposed the first
known measure of information involved by a signal ; and in 1948
Shannon [18] stated his «Mathematical Theory of Communication»
in its practical final form. Significant basic contributions, in these
technical concerns, have been derived later by Gallager [S].

Very earlier Ashby [2] and Brillouin {3] pointed out that Shannon
theory as so defined needed to be revisited in order to be fruitfully
applied to natural sciences and to cybernetics : namely, it should be
modified to deal with syntax and semantics (remark that Shannon
himself already claimed that his formulation intentionally did not
refer to semiology), but at date there were no significant advance in
this way. Recently, extensive researches have been carried out about
the question, and one can mention the approach via the possibility
theory [6] and our relativistic or relative information theory which
introduces a quantitative approach to subjectivity in information.

Indeed in 1975 [8], in an approach to a general system theory
[11], we initiated this reltive information modelling [9] which can now
be considered as being in its final form [15]. But a question which
remained open until now is the problem of defining the entropy of a
form or of a pattern, the solution of which is a prerequisite to cyber-
netics. Recently, we derived some preliminary results related to this
question [12] and our purpose herein is to carry on this study.

The paper is organized as follows. For the convenience of the rea-
der, we briefly recall the essentail of relative information on the one
hand, and of our new concept of total or complete entropy, and then
we shall refine our concept of entropy of stochastic trajectories. Lastly
we shall introduce the relative feature of information in this frame-
work, and we shall outline a possible extension to the entropy of deter-
ministic mapping. Amazingly we shall cross over the theory of fractal
dimensions initiated by Mandelbrot {16].

2. A few prerequisites

We believe that a summarized background on some results we
previously obtained is mandatory since they will be applied to the
derivation of the entropy of form and pattern.

2.1. Observation with Informational Invariance

The framework. Assume that an observer R is observing two conti-
nuous random variables X ¢ R and X’ ¢ R ; and let p(x,x’) denote the
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probability density of (X, X’). We shall assume that the amount of
uncertainty involved by the pair (X, X’) is measured by the Shannon
entropy H(X, X",

H(X,X) := IR2 p(x,x") Inp (x,x%) dxdx’ Q.1

It is well known that incidentally, but incidentally only, H(X,X")
defines too the amount of information involved by the informational
source (X,X’).

Observation with informational invariance. We shall assume that
the main features of the observation process (R — (X,X”)) are suitably
described by the following axioms.

(A1) Due to coupling effects between X ans X’, R cannot measure
the exact values of x and x’ respectively, but instead, the observation
process results in an observed pair (Xps x;) defined by the linear trans-
formation

X, =ax + bx’ ab e R 2.2)
X’p=CX + ex’ ce e R 2.3)

(A2) The observation of the pair (x,x’) does not create nor destroy
the potential information involved by (X,X’) considered as a source of
information.

It is a simple matter to show that there are only two transforma-
tions which satisfy (Al) and (A2), and they are respectively defined
by the equations

X, = Xcosd 4 ysinf , 8 ¢ R 2.4)

x’r=_x sinf 4y cosé (2.5)
and

X; = X coshw + ysinhw , w e R (2.6))

x’rz X sinhw 4+ y coshw 2.7)

Minkowskian observation. Assume now that the additional follo-
wing axiom is satisfied,

(A3) In the special case where x = x’, that is to say when R obser-
ves one variable only, then the equations of the observation process
should reduce to

X, =Qx
where Q denotes a constant gain ceefficient.

Proposition 2.1. Assume that the observable (x,x’) is observed in
such a way that Axioms (A1, 2, 3) are satisfied. Then the corresponding
observation process referred to as Minkowskian observation is defined
by equations (2.6) and (2.7) which can be re-written in the form
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Xp = p(u) (x + ux’) (2.8.)
x’r =p(w) (x’ 4+ ux) © (2.9

Scaling factor. Assume that, on a physical standpoint, the variables
X and X’ are expressed by means of the same measurement unit ; then,
by introducing a scaling factor ¢ such that X and ¢X’ have the same
physical dimension, we shall then have the well known equations

= p(u) (x + ux’) (2.10)
= p(u) (x” + % X) (2.11)
C

For further details about the practical meaning of the axioms (Al, «,3)
above, see for instance the references [9, 13, 15].

Relativistic information. When the observed variables are given
measures of information, one so obtains the so-called relativistic infor-
mation modelling.

2.2. Background on Total Entropy

It is well known that continuous entropy and discrete entropy (in
Shannon sense) are different in their mathematical natures in the sense
that the former is not the limiting form of the latter when the discreti-
zing span tends to zero. Mathematicians customarily claim that it is a
matter of absolute continuity of a measure with respect to another one,
but in a physwal framework such an explanation is not fully satisfacto-
ry at all, and it is rather obvious that it is merely the practical meaning
of these entropies which are different. So, in order to exhibit this
difference, we introduced a concept of total — or complete entropy
which we shall herein bear in mind.

The framework. Consider a discrete random variable X which
takes on the values (Xl X ) with the respective probabilities
Pys Poseee With each x; we assoc1ate an interval length h; as pictu-
red in F1g {n for the spemall illustrative case m = 3.

e — e - - ; . .
\ t 1 '

i t
fw_.ﬂ h1___,,!|4___.h2-———+-l(———— h3 '——‘—)’I:

Fig. 1. Definition of Total Entropy
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The min axioms. We shall assume that the total amount of uncer-
tainty H,(X) involved by X should satisfy the following axioms.

(Bleﬁ H.(X) is a function X[py, h{),... (P> hyy)] the value of
which is not modified by any permutation on the set (pysh 1 (P9,
09)sere (P Hy).

(B2) X() is continuous w.r.t. P{> PPy and hl, h2,...,hm

(B3) X(.) is an increasing function of h; for every i.

(B4) Let @(pl,pz,...,pm) = H(X) denote the Shannon entropy of
X, then one has

X [(p]: l)ay(pmsl)]:qz(pl’p2’pm) (2-12')
(BS) Let (qy, h’l), (gl 2),...,(qn,h’n) denote another random
variable, then one has the equation

X [(plqlahl5h’]);-"’(piqj,hih,j):--w(pmqnshmh,n) ] =

= X[ (Pphp) Py ]+ X[ (@R seelah’)] (2:13)
We then have the following result.
Proposition 2.2. A measure of uncertainty referred to as total

(or complete) entropy which satisfies axioms (B1) to (B5) is defined
by the expression

H,(X) = HX) + K g)npi Inh; 2.14)
i=l
m K/k
= —k.E piln(pi/h / ) (2.15)

where K denotes a posmve constant assomated with the uncertainty
involved by the intervals (x5 + 1% ). o

Propositiop 2.3. The continuous (Shannon) entropy is the limiting
form of the discrete (Shannon) entropy when the discretizing span
tends to zero. O

For further details, see Ref [13].

Bibliographical Comments. In 1975 [8], by using physical argu-
ments, we suggested a quite similar entropy referred to as «effective
entropy» in an attempt to derive a modelling of negative information.
Clearly, we defined

Ho(X) 1=H(X) + Z pihy(x)

where hi(xi) is a uncertainty associated with the definition of the state
Xj itself. Later Aczel and Daroczy [1], via the axiomatization technique
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of mathematicians, re-discovered exactly this same entropy that they
re-named «inset entropy» *.

3. On the entropy of form and pattern
3.1. Human Feature Extractor

The following result has been put in evidence by a large number of
practical experiments and can then be taken for granted as being
soundly supported.

When a human observer is examining a form, his cortex selects
the salient features of this pattern, mainly the angles, and then uses
them later to build-in a referential model. For instance, it has been
proven that the nose of a face is of paramount importance in the iden-
tification of a portrait by a human observer. The basic conclusion
which results from this remark is the following one.

Any recognition process of a form by a human cortex can be
decomposed into two stages : (i) the first step in which the cortex
characterizes the pattern by means of a finite number of local features,
and (ii) the second step in which each local feature is individually ana-
lyzed one at a time.

The first stage involves a discrete entropy , the second stage deals
with the amount of information contained in a continuous pattern,
and we are going to comment on this point in the next sub-section.

3.2. Classification of Continuous Observation Processes

One may of course aim to define the entropy of a continuous
pattern in an absolute way (it would then be a somewhat maximum
possible uncertainty involved by this form) but it is much more realistic
to consider that this uncertainty should depend upon how the form
is observed ; and on doing so, we are more or less implicitly introducing
the basic relative feature of information via the definition of the
corresponding entropy. In this way, one can define three main types of
observation for a stochastic scalar valued process.

White observation. In this process, we observe each point (£,X(t))
irrespective of the other ones, as if it were alone. Geometrically spea-
king, we intersect the trajectory F of X(t) by a straightline parallel to
the X-axis and we consider the position of the points so obtained. The
uncertainty of the trajectory over a given finite horizon (tostp) is then
the combination (in some sense to define) of the individual entropies
for each X(t).

Local Markovian observation. Assume that the trajectory is
discretized in the finite sequence X(to), X(tl), X(tz),...,X(tf) ; then the

1. L’«inset entropy» de Aczel et Daroczy admet, dans un cas pa:ticx}li;r, une formula-
tions identique a celle de P'«effective entropy» de Jumarie (Note du Comité de Rédaction).
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observer observes the corresponding trajectory in t

sequence of the pairs (X(ty),X(t})), (X(’gl),X(%;),X(tg%)f?n'?h: ftott};el
upcer.talnFy so involved by the trajectory to the observer is the com-
bmatlon. in some sense to define of the various uncertainties involved
by the different pairs (X(ti),X(ti 4 1)).

Total Markovian observation. In the model, each point X(t.) is
observed respectively to the preceding one X(t;, 1)- We then Illave
the finite sequence X(ty), (X(Tl)/X(to)), (X(tz)/X(tl)),..., and the
total amount of uncertainty so involved by the trajectory is the com-

bination, in some sense to define, of the different u inties i
, i s ncertainties invol-
ved by the different conditional variables : (X(ti)/x(ti—-i))' v

4.  Entropies of stochastic process

As we point out above, the uncertainty involved by a stochastic
depngds upon how the latter is observed, and in the present section
we give some expressions of this entropy under different modes of
observation. For the sake of length we do not explain the derivation
of these equations, transferring the reader to our main reference (Ju-
marie 1988) for further explanations.

Re§ult 4.1. White observation Let X(t) ¢ R denote a continuous
stochastic process with the probability density p(x,t), and assume that
the corresponding trajectory F is subject to a white observation by an
qbserver R. Then, the uncertainty H(F;0,T) so involved by F over the
time range (O,T) is defined by the expression

1 7T
HF0T) = ——/ [ p(x,t) Inp(x,t)dxdt + In T “4.1)
To R

Result 4.2. Non white observation. Assume that th i

. . . e stochastique
dynamms X(t) e Ris observed by an observer in a non white obse;lva-
tion process. We.shall infer that this observation is characterized by a
kernel u(t) 2 0 in such a manner that the amount of uncertainty so

involved by the trajectory F over the time range (0,T) is measured by
the expression.

1 T
H(F;0,T) ;= — — / [ u(t) p(x,t) Inp(x,t)dxdt + In T “4.2)
T o R

. In the special case of the Markovian process defined by the equa-
ion.
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x(t) = (f(x,t) + g(x,tHw(t) (4.3)
where w(t) is a white noise with zero mean and unit variance, one has

1T .
HF0,T)= —f [ p(x,) In px.t) L dxdt (4.4)
T o R lgx,H)l Rme) 2

Well obviously, this expression represents too the trajectory
enropy of a Markovian process under local Markovian observation.

Result 4.3. The trajectory entropy under global Markovian obser-
vation of the Markovian process defined by Equation (4.3.) is

1

H(F;0,T) =H(X;0) + i fT [ pet)in [ gt | (2me)? Jdxdt
T
° T (4.5.)

5. Relative entropy of stochastic trajectory
5.1. On the Level of Subjectivity

. Basically, the subjectivity is introduced at the level of the obser-
vation of the trajectory by the observer. If this trajectory is observed
in its entirety via the selection of a finite number of striking features,
then the usual framework of relative information applies directly.
In contrast, in a Markovian observation, this subjectivity should appear
locally, and the overall subjectivity would then be the combination, in
some sense to define, of these local subjectivities. In other words, it is
the observation of the entropy H(X;t) which then involves subjectivity.

5.2. Relative Trajectory Entropy

Let X(t) ¢ R and X’(t) ¢ R denote two stochastic processes,
and assume that their respective entropies H(X;t) and H(X’;jt) are
observed in such a way that the axioms Al, A2 and A3 of section 2
are satisfied. As a result, this local observation provides a relative
entropy in the form

H(X;t) = p[u(t) ] [HX;) + u(hHX ;) ] (5.1)

In short, we so associate with each variable X(t) another one X’(t)
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yvhich can be thought of as picturing the practical meaning of X(t) :
in other words, H(X";t) is the semantical entropy of X(t). We then
have the following result.

Proposition 5.1. Assume that the pair (H(X;t), H(X’;t)) is ob-
served following a Minkowskian observation to yield the local relative
entropyA expressed by equation (5.1.) ; then in the framework of the
randomization with respect to time, the corresponding relative trajec-
tory entropy Hr (F;0,T) is defined by the equation

1T
H/(F;0,T) = I r@e ] HEX: + u®HX ) ]dt + KIn T
o]

....... (5.2)

1 T
=——1/ [ u@elu®] px.t) Inp(x,t) dxdt
T o R

1T
+ = S e u® OHX At + K 1InT © (5.3)
(0]

\yhere u(t) is the structural parameter which is involved by the equa-
tion (4.2.).

As a.r.natter of fact, we could have stated this result in the form
of a Qeﬁnltlop, but we rather use the term of proposition to emphasize
that it is a direct consequence of the randomization technique which

allovyed us to obtain a unified framework for descrete entropy and
continuous entropy.

In a like manner, the Minkowskian observation of the pair (H(X,
Y;t), H(X;Y;t)) provides the relative or subjective entropy

1 7T
H,(FXy;O,T) = _T J uxy(t)p [uxy(t) JTHX,Y ;) + uxy(t)H(X’,Y’;t)] dt
8]

+ K InT (5.4.)

where the subscript xy in Uy (t) and u,,(t) emphasizes that the corres-
ponding variables are related to the pari (X,Y).
Comments. We have shown [14] that uxy(t) necessarily satisfies

a composition law in the form

uxy(f) = [uy(t) + uy/x (O 1/ 1 + uy(Dug /(1) ] (5.5)

In contrast, the law which is followed by uxy(t) is not so easy to be
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defined, at first glance. This is an open question. Nevertheless, for
white observation, one has of course uxy(t) =1.

For a Markovian process under local Markovian observation, one
has the equation

1
,uxy(t)H(X,Y;t):H(X,Y;t) + f 2p(x,y,t) In( IGxy, )l 2 (2me)dxdy (5.6.)
R

where IG(x,y,t)! is the absolute value of the determinant of the tran-

sition covariance matrix of the process.
If is clear that while uxy(t) = uyx(t), generally one has uxy(t) +

uyx(t), so that as a result one has too Hr(ny';O,T) + HrFyx;O,T)
in most cases. Nevertheless, we can state the following result.

Proposition 5.2. The equality

Hr(F O,T) = Hr( Fyx>O:T)

Xy’
holds when and only when the following conditions are simultaneously
satisfied, which are

#) = ux(t) and u, /1 )t) = uy(t) 0 (5.7.)

Uxly y/x

The proof is a direct consequence of equation (7.5.).
5.3. Conditional Relative Trajectory Entropy

In Shannon theory, given two random variab}es X and Y, the
conditional entropy H(Y/X) is defined by the expression

H(Y/X) := H(X,Y) — H(X) (5.8.)

and this approach is mainly supported by the fact that one has the
equality H(X)Y) = H(Y,X). At first glance, analogously one could
envision a similar technique to define Hl.(Fy /X;O,T), namely Hr(Fy/x;

0,t) = Hr(ny;O,T) — Hr(FX;O,T), but this approach would be wrong as
we have Hr(ny :0,T) = Hr(Fyx;O,T). .

So in order to circumvent this difficulty, we shall rather consider
the explicit expression of H(Y/X). that is to say

H(Y/X) = Z pxp) HOY/x)) (5.9)
1

and we sahll generalize it in the following way.
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Definition 5.1. Let uy/x(t) be defined by Equation (5.5.), then

the corresponding conditional relative trajectory entropy is defined
by the expression.

H,(F,,/,0,T) :=

T
g/ J . uy/x(OP lug O HY/XX5) +

1
T
+uyOHY/X X0 1dt + K T 0 (5.10)

Comments. It may be interesting to compare Hr(Fy /x;O,T) with
H(Fy/X;O,T). To this end, and as a special illustrative case, assume

that uy /X(t) = v(t) is small with respect to the unity. The after some
calculations, we obtain

1 T
H(Fy0.T) — Hy(Fy , :0.T) = — Iy OHE/Xs) — HE/XY:)
o}

— Y(OHY’ /X, X’;t) | dt

This being so, assume that Uy /X(t) > 0, what is quite meaningful on a
practical standpoint ; and assume further that v(t) < 0 ; we may then
have H(Fy/X;O,T) > Hr(Fy/X;O,T). Next, suppose that H(X’/X;t) = 0
and consequently that H(X’/X,Y;t) = 0 ; when v(t) > 0 one may have

H,(Fy/,;0,T) > H(Fy 1, 0.T),

6.  Relative information for stochastic continuous trajectory

6.1. The Local Approach

We now have at hand all the prerequisites which will allow us to
measure the amount of relative transinformation between two stochas-
tic trajectories X(t) and Y(t) over the time range (0,T) and we state.

Definition 6.1. In the framework (syntax, semantics) and on
assuming that the local entreopies are observed via a Minkowskian
observation process, the total amount I(Fy/Fx;O,T) of relative (or

relativistic) information provided by (FX;O,T) about (F_,;0,T) is defined
by the expression v

Ir(Fy/Fx;O,T) ::H(Fy;O,T) - H[(Fy/FX;O,T) (6.1.)
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1 T .
= —; i) . H(Y;t) — uy, /x(t)p [uy/x(t)][H(Y/ X, X'5t) +
1y OHOCX X0 § (6.2.)
1 T
= — [ L(Y/X;t)dt (6.3.)

T o

where 1(Y/Xt) is the relative information provided by X about Y at
the instant t. O

Comments. (i) On the surface, equation, looks like a mere straight-
forward formal generalization, a bit in the same way as the definition of
continuous entropu via formal inference from discrete entropy, but
this is a semblance only. Indeed, all this derivation is firmly supported
by the randomization technique with respect to time, which is equi-
valent to assume that time itself involves its own amount of uncer-
tainty.

(ii) According to the first integral mean value theorem, one has

Ir(Fy/Fx;O,T) = Ir(Y/X;tC)

for some t, such that 0 < tc < T. In other words, the transinformation

of the trajectory over the time range (0,T) would be summarized in
the instantaneouis transinformation at the instant t. We shall see that

this remark is of paramount importance when t is no longer time but
rather is a space parameter.
(iii) Obviously, when Uy/x (t) = 0 for every t, one finds again the

direct generalization of Shannon transinformartion.
6.2. The Global Approach

In subsection 6.1, basically we assumed that the subjectivity of
the observer applies to the amount of transinformation at each instant,
and that then all these measurements are averaged in the form of an
integral with respect to time.

Another valuable approach which merely pictures a different
level of observation, is to assume that this subjectivity applies to the
trajectory entropies themselves. In other words, these trajectories
are themselves subject to the Minkowskian observation process.

In such a case, we shall denote by U /x (0,T) the conditional

subjectivity about the trajectory (Fy;O,T) given (F,;0,T), and the
relative information Irg(Fy/Fx;O,T) so obtained is given by the ex-
pression.
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1g(Fy/F,0.T) :=H(Fyi0,T) = [y (0.D)] [H(F F F Py s0.T) +

+ Uy /X(O,T) H(F’y/FX,Fx,F’X’O,T) ] 6.4.)
with the notations
1 T
H(Fy/F, .F",:0,T) :=_T S THEY/XX ) dt +1n T (6.5.)
o
T
HF[F, F0T) =— [ HY/XXt)dt+In T (6.6.)

(o]

Comments. In most general cases Uy /v(ti,tf) should depend upon

the initial instant and the terminal one ; and this dependence upon t¢
is quite relevant to describe learning processes, for instance.

(ii) Remark that expression (8.4) is quite consistent with the
first integral mean value theorem.

(iii) Which of the transinformation I, or Ir is the best for applica-

tions ? Assume that we are comparing hand written B’s and 8’s. If we
first look at B, and then we look at 8, and then compare the two
patterns so obtained, we are then using Ir- . But in contrast, if we si-

multaneously compare B and 8 by using a scanning procedure, the we
explicitly refer to Ir‘

7. Entropy of deterministic maps

7.1. Trajectory Entropy of Maps With Respect to a Class of
Probability Density Functions

Definition 7.1. Assume that X e¢ R is a random vector and let
P denote the set of its admissible probability density functions p(x).
Then as a direct consequence of the Shannonian entropy, the entropy
H[f(.)/P] of the RD - R™ map f(.) relatively to P is measured by the
quantity.

H[f(.)/P] = max J
p(x)eP R
where J(x) lis the Jacobian determinant * of f(.). o

2. Des entropies faisant intervenir In h(x) [ ont ét6 considérées, dans le cas général,
par J. Fronteau (L’entropie et la physique moderne, CERN, MPS/Int. MU/EP, 1966 ; A propos
de diverses dynamiques non-hamiltoniennes, Annales de la Fondation Louis de Broglie, vol. 1,
no 4, p, 179, 1976) et dans le cas linéaire par R. Vallée (Aspect informationnel du probléme
de la prévision dans le cas d’une observation initiale imparfaite, Economie Appliquée, tome 32,
n. 2-3, 1979 ; Evolution of a dynamical linear system with random initial conditions, in Cyber-
{lﬁtécscz;{u)i Systems Research, R. Trappl. (ed.), North Holland Publishing Company, 1982)

p(x) In 17(x) ldx (7.1)
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This definition is supported by the equation
HIfX) ] =HX) + fRnp(}) In 17(x) fdx (7.2)
where the integral is then thought of as the conditional entropy
Hf()/X].
7.2. Trajectory Entropy of Degree d of Continuous Maps

As a special of class P, assume that p(x) is defined by the equation
H(X)=C (7.3)

where C is a given constant, then by using Lagarnge parameters for
instance, the definition (7.1.) yields the trajectory entropy in the form

Jgqn U(&)ld In U(x)! dx
H,lfO)] = | (7.4)
S Rn U(ﬁ) Idd)_<_

where d € R is a parameter which depends upon C : d = d(C).;

Definition 7.2. We shall refer to Hd[_f(.)] as to the trajectory en-
tropy of degree d of f(.).

7.3. Thermodynamic Entropy of Maps and Liapunov Exponent

For a one-dimensional map f(.) defined on the finite interval
[a,b], the trajectory entropy of order zero

H[f().;a,b] = —] fb Inlf(x) ldx (7.5)
b-a a

is merely the so-called Liapunov exponent of f(.).
When f(x) is the probability density p(x) of a scalar variable,
then one has

Hylp()]=— H(x) (7.6)

and this result suggest to consider H; [f(.)] as being the thermodynamic
entropy of f(.).

7.4, Application to Dynamic Systems

Consider the dynamic system
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X(t) = — VX(X) ;x(0) = Xg X€ R (7.7)

where V(x) denotes the potential function’of the dynamics and Vi(x)

holds for the derivative dV(x)/dx. According to the equations (7.3.)
and (7.6.) the thermodynamic entropy Hl[x(.)] of the trajectory

x(t) on the time range (to,tl) is

f b o(x) In |Vx(x) [dx

Hy[x()ab] = a - (7.8
J gy o(x) dx
with the notations
o(x) :=—sgn V,(x) ;2 := x(ty) ;b= x(tp) (7.9.)
Assume that o(x) 2 0 for a < x <, b, then one has
Hylx()]= -1 FPmIVy (0 ldx (7.10.)

In other words, the thermodynamic entropy of th trajectory
x(t) is equal to the Liapunov exponent of the potential function V(x).

8. Relative Entropy of Deterministic Maps

Let Y ¢ R denote a random variable the relative entropy of which
is defined by the equation

H(Y) = qu(y)p V)1 [ Ina(y) + v(y)H(y)]dy (8.1)

where v(y), — 1 < v(y) < + 1 is a function which can be considered
as characterizing the subjectivity of the observer, and when H(y) is
the semantic entropy associated with y.

This being so, we consider the random variable X defined by the
transformation Y = f(X) where f(.). is continuously differentiable,
and we bear in mind that the probability density p(x) of X is p(x) =
qlf(x)] [£(x) |. We make the following assumptions.

(A1) We suppose that the function u(x) of the relative observation
of X is defined by the equation u(x) = v[f(x)). _ _

(A2) We suppose that the semantic functions H(x) and H(y) are
the same.

With these assumptions, we make the transformation Y = f(X) in
the equation (8.1.) to obtain

3. Au sens de la théorie des systémes dynamiques (N.d.C.R.).
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H )=/ p(x)p(w)-lnp(x) + In F'l+ u(x) H[f(x)]] dx (8.2)
R

H(X) + J p(x)p@) [In lP(x)] + wEOHIEC) - H)ldx (8.3)
R

By using an approach similar to the derivation outlined in Sub-
section 7.1. but applied to Equation (8.3.), we then obtain the.

Definition 8.1. The relative (or subjective) entropy of the map
f(.). with respect to the class P of probability density functions defined
by Equation (7.3.) is

I 2 [ 1060 19p(uin Fx) | 4+ u(x)[H(F) — F(x)]ldx

HyqlfO)]= (8.4)

b
J, P19 dx

9. Conclusions

Our thesis is that the information theory as initiated by Shannon
a few decades ago contains in itsefl the seeds for its self-generalization.
This is true to settle the apparent discrepancy there is between discrete
entropy and continuous entropy, this is true to define the entropy of
deterministic and stochastic trajectories ; and this is true to introduce
syntax and semantics in the framework. In this way, one can claims
that Shannon theory is a self-referencial theory.

As concluding remardks, we shall summarize the potential of the
approach outlined above.

(i)We considered linear observation only, but it is clear that the
principle of informational invariance applies also to non linear obser-
vation.

(ii) The entropy of deterministic patterns, as so derived, is a
by-product of Shannon theory, therefore a unity which will be of help
to expand a thermodynamics of forms, for instance by using some ideas
of Mendés France et alii [4](. Moreover it is not impossible that our
new definition of deterministic entropy refines the results obtained
by this author on the temperature of curves.

(iii) The theory applies to discrete phenomena by using our con-
cept of «total entropy of a discrete variable» and by this way we should
be able to exhibit its relations with the theory of fractals.

(iv) At first glance, it seems that the approach can be generalized
to the multi-dimensional case without too much difficulty.

(v) The equation derived in subsection (7.3.) is interesting as it
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relates Liapunov exponent and entropy of order one, and in this way
it would not be surprizing that the latter be a better measure of how
chaotic is a dynamics than the former.

(vi) Given this remark in subsection (7.3.), can we classify poten-
tial functions by their Liapunov exponents and then have a new look
at the catastrophe theory ?

References

[1] ACZEL J., DAROCZY Z., A mixed theory of information 1.
Symmetric, recursive and measurable entropies of randomized
systems of events ; RAIRO Theoretical, Computer Science,
Vol. 12, No 2, pp 149-155, 1978.

[2] ASHBY W.R., An Introduction to Cybernetics, Chapman and
Hall, London, 1956.

[3] BRILLOUIN L., Science and Information Theory, Academic
Press, New York, 1956.

[4] DUPAIN Y., KAMAE T., MENDES FRANCE, Can one measure
the temperature of a Curve ? Archive for Rational Mechanics and
Analysis, Vol. 94, No 2, pp 155-163, 1986.

[5] GALLAGER R.G., Information Theory and Reliable Communi-
cation, John Wiley, New York, 1968.

[6] HARTLEY R.V., Transmission of information, The Bell System
Technical Journal, Vol 7, pp 535-563, 1928.

[7] HIGASHI H., KLIR G.J., Measures of uncertainty and informa-
tion based on possibility distributions, Int. Journal of General
Systems, Vol 9, pp 43-58, 1982.

[8] JUMARIE G., Further advances on the general thermodynamics
of open systems via information theory, Effective entropy,
negative information, Int. Journal of Systems Science, Vol 6,
No 3, pp 249-268, 1975.

[9] JUMARIE G., Théorie relativiste de I'information 1, II, III, IV,
V, Annales des Télécommunications, Vol 33, Nos 1-2, pp 13-27,
1978 ; Vol 34, Nos 9-10, pp. 491-507, 1979 ; Vol 34, Nos 11-12,
pp 521-530, 1979 ; Vol 35, Nos 7-8, pp 281-296, 1980 ; Vol 37,
Nos 5-6, pp 201-212, 1982.

[10] JUMARIE G., Définition et application d’une mesure de l'infor-




46

(11]

(12]

[13]

(14]

(15]

[16]

(17]

Guy JUMARIE

mation tenant compte de la signification des symboles, Annales
des Télécommunications, Vol 39, Nos 11-12, pp 523-537, 1984.

JUMARIE G., Subjectivity, Information, Systems. Introduction
to a Theory of Relativistic Cybernetics, Gordon and Breach,
London, New York, 1986.

JUMARIE G., Some approaches, to the measure of the amount
of information involved by a form, Sujet. Analysis, Modelling,
Simulation, Vol 3, No 6, pp 479-506, 1986.

JUMARIE G., A Minkowskian theory of observation. Applica-
tion to uncertainty and fuzziness, Fuzzy Sets and Systems
(to appear), Vol 24, No 1, 1987.

JUMARIE G., Analysis of nonlinear stochastic distributed sys-
tems by using the dynamic equations of their state moments,
Proceedings of the 1987 American Control Conference, IEEE
Publications, New York, 1987.

JUMARIE G., Relative Information. Theories and Applications,
Springer Verlag, Berlin, New York (to appear), 1987-1988.

MANDELBROT B.B., The Fractal Geometry of Nature, W.H.
Freeman and Company, New York, 1977, 1982, 1983.

NYQUIST H., Certain topics in telegraph transmission theory,
AIEFE Trans., Vol 47,9617, 1928.

SHANNON C.E., A mathematical theory of communication I,
11, The Bell System Technical Journal, Vol 27, pp 379423,
623-656, 1948.

REVUE INTERNATIONALE DE SYSTEMIQUE
Vol.2,NO 11,1988, pp. 47 4 62

HASARD ET SYSTEMES, QUELQUES REMARQUES
Jacques BONITZER
Professeur Honoraire !

Ecole Nationale des Ponts et Chaussées

Résumé

Le renouvellement de la théorie des Probabilités au XXe siécle,
et les problémes des Systémes, appellent un renouvellement cor-
respondant de Iépistémologie du hasard. L’article insiste particu-
liérement sur P’existence de structures spécifiques sous-jacentes
4 tout phénoméne aléatoire, sur le role dominant et les implica-
tions des propriétés d’additivité en théorie des Probabilités, et
sur la nécessité de comprendre le sujet soumis & des effets aléa-
toires comme sujet social.

Abstract

Renewal of Probability Theory in the XXth Century, as well of
Systems problems, call for a renewal of Chance epistemology as
well. The author particuliary emphasizes following items : exis-
tence of specific structures underlying every chance phenomenon;
ruling character and implications of additivity properties in Pro-
bability Theory ; necessity of considering subjects submitted to
random effects with their social character.

Les modéles systémiques d’émergence du sens et d’organisation
par le bruit font appel aux techniques du calcul des Probabilités et de la
théorie de I’Information a un niveau tel, et de telle facon, qu’ils invi-
tent a renouveler la réflexion épistémologique sur le concept méme
de hasard. Leur invite, au demeurant, ne fait que renforcer celle qu’im-
plique le renouvellement en profondeur de la théorie des Probabilités
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