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Abstract

In this information age, computers play an essential role in almost
every field of our daily life. There is a great deal of uncertainty
and incompleteness in the information and knowledge of real-world
problem domains. Evidential reasoning is an area of machine intelli-
gence which addresses this issue. Since human beings have the cogni-
tive capability of dealing with uncertainty and incompleteness, one
may asklhow to model human intelligence in this aspect. A relax,ation
process is suggested for evidential reasoning on artificial neural net-
works. It is hoped that further investigation may show this system
to be a viable model for biological neural networks as well.

Résumé

Dans cette ére de 'information, les ordinateurs jouent un role essentiel
fians presque tous les domaines de la vie quotidienne. Il existe une
1m‘p0rtante part d’incertitude et de nombreuses informations incom-
plétes dans les connaissances concernant les problémes du monde
réel. Le raisonnement basé sur la théorie de évidence est un aspect
de.l’«intelligence» de la machine qui répond & ces préoccupations.
Pulsqu.e les &tres humains ont la capacité cognitive de traiter incertitu-
QGS et imperfections, on peut se demander comment modéliser Pintel-
ligence humaine & cet égard. Un processus de relaxation est suggeére
pour le raisonnement basé sur la théorie de 'évidence dans les réseaux
de neurones artificiels. On espére que des investigations futures per-
mettront de montrer que ce systéme est également un modéle viable
pour les réseaux de neurones biologiques.
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1. Introduction

The reasoning process in human intelligence is adaptive, incremental and
evolutive. On the contrary, in the information processing literature, the
reasoning process usually employes logical inference and symbolic processing.
This approach is not readily amenable to the characteristics of human intelli-
gence.

In this paper, the scope of reasoning is broadened. In addition to the usual
logical and symbolic methodologies, we use cognitive maps (weighted graphs
of relations) and iterative relaxation techniques on artificial neural networks.
Artificial neural networks are computational models that are similar to how
human brain works. This idea frees us from the limitations of conventional
Al techniques and enables us to extend the usual symbolic reasoning results
to more adaptive and evolutive systems. While symbolic processing of our
system still relies on the usual AI techniques, computationally intensive tasks
(e.g. constraint satisfaction and evidential reasoning) are carried out by
artificial neural networks. Thus, we favor a hybrid system of symbolic and
neural processing modules which are complementary to each other.

RULE-BASED
EXPERT SYSTEM

—1 REAL WORLD
APPLICATION

Neural DOMAINS
Networks

Figure 1. A hybrid Al and neural network system.

Human intelligence has the capability of deriving definitive and conclusive
knowledge from uncertain and incomplete information. From the information
processing point of view, a quite successful theory of evidential reasoning has
emerged from several different approaches — fuzzy reasoning [19], probabilistic
inference [15], and frames of discernment [18]. In this paper, evidential
reasoning is performed as an iterative process [16], rather than a single
collection of arithmetic and logical operations for computing certain proba-
bilistic or fuzzy measures ([15], [18], [19]). Moreover, the correct prescription
of initial probabilistic and fuzzy measures are not necessary, because the
system is self-correcting.

A knowledge base is dynamically encoded in cognitive maps represented
by artificial neural networks. The link weights represent the relationships
among concept nodes or their attribute nodes. The node values of the
neural networks are updated from some initial input node values representing
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certainty factors of evidences and observations. The iterative process reaches
some limiting output node values representing certainty factors of hypotheses
and diagnoses. This approach is adaptive and flexible, because not only the
node values (certainty factors) are updated but also. the link weights are
modified (learned from external world) during the computation. It seems to
be a rational way of managing uncertain knowledge. In principle, we should
make the least commitment to the information and knowledge structure in
evidential reasoning before we can draw any conclsuion. As we know more
and more about the situation, the structure can gradually be hardened.
Neural computing provides this kind of “plasticity”. In other approaches to
evidential reasoning, a lot of structures are assumed in order to get to the
uncertain information.

2. Artificial neural networks

There are many artificial neural network models ([9], [10], [17]). The
essential characteristics are analog (real-valued) and parallel computation
unlike the digital, sequential nature of ordinary computers. Basically, an
artificial neural network model should contain the following components:

(1) A set of processing units.

(2) A state of activation.

(3) An output function for each unit.

(4) A pattern of connectivity among units.

(5) A propagation rule for propagating patterns of activities throughout
the network.

(6) An activation rule for combining inputs to a unit with the current state
of that unit to produce a new level of activation for that unit.

(7) A learning rule to modify patterns of connectivity by experience.
(8) An environment within which the system must operate.

The processing units have only simple computational functions. There
should be a significant number of these units to carry out computations in a
collective way. Artificial neural networks can be considered as very fine
grained parallel processors. These units may be used to represent conceptual
objects such as features, letters, words and concepts. Since an artificial neural
network consists of a large number of processing units, a group of units may
be used to represent conceptual objects distributively. In fact, neurophysio-
logists have hypothesized that information in our brains are distributedly
represented [17]. In this case, units may represent feature entities which form
feature patterns or vectors. There are input units, output units and hidden




424 S.-S. CHEN

Threshold Function

Activation Function

Figure 2. An artificial neural network
and its activation and threshold functions.

units in an artificial neural network. The hidden units are the system units
that encode a wide body of knowledge.

Hidden Units
Features _ Operations Outputs

Figure 3. Input, hidden and output units.

The state of a system of # units at time ¢ i3 given by the vector

A(N)=(ay (0,2, (D), - - -, 4,(1);
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where each «, (1) is the activation value of unit u; at t. The processing of the
system is determined by the dynamics of A():

dA (D/dit=F (A (1), ®(W (1), 0 (1)),

where ® (W (£), 0 (1)) is the network input, depending on the connectivity
matrix W (¢) and the output vector O(?) at ¢. In ordinary models, the network
input to unit v, is w0 0;(1). The function F is a nonlinear function, such
as a sigmoid function.

The output function f,(q, (#))=0,(t) may be a threshold function or a
stochastic function which produces the output. The output vector O (f) of
the system is denoted by (01 (,0,(8), .. .,0,(1)).

The pattern of connectivity describes the topology of an artificial neural
network by a sparse matrix W () =(w;;(1)). It is called the matrix of link
weights which represent the strengths of connections among units. A positive
(negative or zero) weight represents excitatory (inhibitory or no) connection
respectively. The propagation in the network is assumed to be asynchronous,
that is, local computations are performed simultaneously. For simplicity,
computations are assumed to be instantaneous.

Modification (learning) of patterns of connectivity consists of the following
three kinds: (1) development of new connections, (2) loss of existing connec-
tions, and (3) modification of strengths of existing connections. The simplest
learning rule was observed by Hebb in 1949: “If a unit u; receives an input
from another unit u;, and if both are highly active, the weight w;; from u; to
u; should be strengthened”. The change Aw,; is given by &g, 0; (€ is the
learning rate) in the delta rule. In general, Aw;; is a nonlinear function
g (a; (1), (1), 0;(1), w;; (1)), where 1,(¥) is the teaching input from the external
world. In the simple delta rule, there is no teaching input given.

The representation of an external world and input/output pairs depends
on the specific problem domain. For instance, a Markov random field model
may be suitable to visual perception. In knowledge acquisition and evidential
reasoning, we represent knowledge in a collection of cognitive maps.

3. Cognitive maps

Cognitive maps are (uni- or bi-) directed graphs representing relations (by
arcs) among concepts/attributes (by vertices) [1]. Cognitive maps include
several knowledge representation schemes. Semantic networks or frames form
a special class of cognitive maps. Inference networks and causal networks
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form other classes of cognitive maps. Other cognitive maps include spatiotem-
poral, terminological, and evidential cognitive maps. Spatiotemporal cognitive
maps represent knowledge at different locations and times. Terminological
cognitive maps represent different terminologies and their equivalences. Evid-
ential cognitive maps represent conflicting evidences and their combination,
different viewpoints and their relative weights, uncertain and partial informa-
tion and knowledge.

In cognitive maps, link weights may be assigned to relations representing
their degrees, and node values may be assigned to concepts and attributes
representing certainty factors or belief measures. They have the structure of
a fuzzy graph. The positive relational weights represent excitatory associ-
ations, and the negative relational weights represent inhibitory associations.
There is a natural mapping from cognitive maps to artificial neural networks.

Moreover, cognitive maps as graphs can be extended to allow both inputs
and outputs from the external world. First, input and output nodes may be
added to a cognitive map as follows:

INPUTS

OUTPUTS

Figure 4. Cognitive maps with inputs and outputs.

This is obvious when we know exactly which are the input and output
nodes. Alternatively, a cognitive map receives inputs by clamping (or instanti-
ating) a certain number of nodes, and it generates outputs by sending values
of certain nodes to the external world. The only difference between the two
is that neural network updating dynamics is applied to all nodes in the
second case, but not to the input and output nodes in the first case.

A cognitive map has either a single representation or a distributed represen-
tation. A production may be represented distributedly by its feature entities
and a relationship between two propositions by multiple links among feature
entities.
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Concept

T
Alirbutes

Disiributed
Links between
Alirbutes

(o |

Figure 5. Distributed representation.

4. Evidential reasoning

Artificial neural networks are useful to evidential reasoning. We shall
formulate some evidential reasoning problems in cognitive maps and artificial
neural networks. There are several interesting advantages of this approach.
We shall compare our evidential reasoning scheme with Bayesian networks
[15] and probabilistic logic ([13], [14]).

What is the significant differences between our system and other evidential
reasoning systems? In other systems, certainty factor and belief measure can
only be updated by new evidences. In our system, certainty factor or belief
measure may also be improved upon through a relaxation scheme of con-
straint satisfaction without any new evidence introduced. Thus, there are two
components: (1) reasoning based on additional external evidences, and (2)
reasoning with internal existing constraints among propositions in the knowl-
edge base.

Bayesian networks are directed acyclic graphs with nodes

{x1,....x,}

representing propositions and links representing direct relationships of propo-
sitions whose weights are conditional probabilities of these propositions. The
joint probability distribution p (x4, ...,x,) can be computed by conditional
probabilities, such as

p(xn|xn~1' . 'xl)p(xnfllxn-2' . ‘xl)' . 'p(x31x2x1)p(x2!xl)p(xl)'
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Conversely, conditional and marginal probabilities are computed from joint
probabilitics. Bayesian inference is performed by computing the marginal
probabilities of hypotheses (propositions) {Hy, .. .,H,}, given the probabili-
ties of evidence {e,, .. .,e, }. Interpretation of input data is to instantiate a
set of proposition variables and to compute the probabilities of hypotheses
variables. That is, to find the most probable instantiation of all hypotheses
variables, given the observed data.

Although probability axioms provide a rigorous calculus for evidential
reasoning, their relevance to human intelligence as well as real-world applica-
tions is disputable. If human intelligence is modeled by neural networks, then
conditional and marginal probabilities can not be computed in a natural way
from joint probabilities. However, joint probabilities are computed by the
conditional probabilities as link weights and the marginal probabilities as
node values of a particularly structured neural network of joint probabilities.

Nevertheless, artificial neural networks have the capability to manage
uncertainty in an intrinsic manner. Evidential reasoning is represented by
evidential cognitive maps which are mapped onto artificial neural networks.
The computational models of artificial neural networks are used for the
incremental computation in evidential reasoning.

As input nodes, evidences are the instantiated (clamped) proposition nodes
of an artificial neural network. As output nodes, each proposition in the
collection of hypotheses is assigned a certainty factor. The probability axioms
are not required. Evidences and their certainty factors are propagated through
the networks so that, in the equilibrium state, hypotheses are assigned some
Jimiting belief values. Similarly, an artificial neural network supplies a mech-
anism to revise belief values of a collection of hypotheses to reach the most
satisfactory explanation of evidences.

The probabilistic logic [14] is a semantic generalization of the first order
logic, in which the truth values of propositions are probability values between
0 and 1. It applies to a (finite) knowledge base of consistent propositions.
This probabilistic inference reduces to the ordinary logical inference when
the probabilities of all propositions in the collection are either 0 or 1. In [2],
the probabilistic logic was extended to evidential logic in the framework of
Dempster-Shafer theory [18]. In [3], we formulated the probabilistic logic as
a probabilistic consistent labeling problem ([11], [12], [16]).

For a knowledge base of propositions {xj,...,x,}, the space of all
possible worlds is given by the collection of all consistent binary valuation
vectors (the cardinality k is <2"). The main idea of probabilistic logic is to
assign a joint probability distribution (p,,...,p,) to this space, called a
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Figure 6. Relaxation of probabilistic labeling.

permissible probabilistic interpretation vector. The generalized truth value
(or probability) of x; is the sum of probabilities of all the possible worlds
that satisfy x;. Probabilistic inference is performed by a linear analysis of
convex sets in vector spaces or by propagation on the binary semantic
networks by conditional probabilities. The probabilistic logic (as a probabilis-
tic labeling problem) is realized as evidential cognitive maps in the next
section.

5. A probabilistic reasoning system

Let S be a collection of propositions {x,, . .., x, }, and let A be a collection
of labels {A,, . . ., A,, } with any mathematical structure. The labeling problem
is to find a consistent labeling of propositions in S by A, given a set of
relations among propositions and a set of constraints among propositions
and their labels. In classical and probabilistic logics, the collection of labels
is only {0,1}.

Since our model allows multiple semantic values, it is useful in various
kinds of evidential reasoning. For instance, conflicting points of view may
be represented by different labels. The conflict is resolved by a relaxation
scheme to reach a consistent labeling. The learning capability of artificial
neural networks permits us to learn about the resolution of conflicts.

For each x;, let A; be the subset of A that is compatible with x;. For any
pair {x,x;} of propositions (,/ distinct), let A;; be the subset of compatible
pairs of labels in A;x A;. A labeling L={L,,...,L,} is an assignment of a
set of labels A; in A to each x;. L is consistent if for each i, j and all A in A,
({M}x A)) intersects with A;;. L is unambiguous if it is consistent and assigns
only a single label to each proposition.
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The probabilistic labeling is to assign a probability distribution p;(A) to
the statement “A is the correct label of x.”. In the case of probabilistic logic,
it is the generalized truth value of x; (there are only two labels-true and
false). An arbitrary labeling of a knowledge base may not be consistent and
unambiguous, because the constraint satisfaction is required among either
propositions in the knowledge base or a combination of new input evidences
with the knowledge base.

The interaction with external worlds (human-machine interface) is through
a symbolic (or Al-based) reasoning subsystem. For instance, query is still
better performed in a logic-based fashion. At the initial stage, the probability
distributions p,;(A) is either estimated by the user or is provided by the
symbolic reasoning scheme. Now the initial probability distributions (evi-
dences) go through a constraint satisfaction checking by the artificial neural
network subsystem. This is a relaxation scheme which iterates the process
until the convergence to final probability distributions is reached. The final
probability distributions are sent back to the symbolic reasoning subsystem
for either interaction with external worlds or further symbolic reasoning.
Thus, evidential reasoning is carried out by the artificial neural network
subsystem.

The relaxation scheme is described as follows. An initial assignment of
probability distributions {p{® ()} to {x;} is given. A relaxation operator R
is defined to transform one set {p¥(A)} of probability distributions to
another set { p{*** (1) }. The limit { p{=' (1) } of { ¥ (1)} gives the unambigu-
ous labeling under compatibility constraints, as k approaches to infinity. In
reality, we expect the limit to be attained after a finite number of iterations.

Figure 1. The relaxation operator R making certainty measures converging to A limit.

EVIDENTIAL REASONING ON ARTIFICIAL NEURAL NETWORKS 431

In practice, the limit {p{*’ (1)} may not be unique (we are not getting an
unambiguous labeling). The multiple labelings are sent back to the symbolic
reasoning subsystem so that its knowledge base can select an appropriate
result for further reasoning.

There are several ways to define the relaxation operator R. A relaxation
operator R should produce a p#* (M) from the combination of p® (1) and
s (M) by some update equations, where s& W= dyy, ry 1) pB ),

J 1

Zdij= Loy A) (1S (M M) £1) s the compatibility function of “label
J

A is assigned to x; and label A’ is assigned to x;”, and j-indices are indices of
source nodes leading to the i-th node. In particular, r,;(A, 1) can be the
conditional probability p,;(A|A) of “x; has label A and x; has label 1. A
requirement of the update equations is that p**1 (X)) should remain to be a
probability distribution.

A relaxation operator R is defined by the following update equations ([3],

[4):
PP () =min 1, max (0, pi (W) + s V)],

sP= 2 @F L)+ ApE (1) pP (1),
PAA ]
AP D (M) = Aplf (A, M)+ by pE D (1) p (W),

where a;; and b;; are learning parameters. The first equation makes sure that
PETY (M) stays between 0 and 1. The second equation provides the network
input to the (7,A)-th node. The third equation includes the Hebbian learning
rule as a special case.

6. A fuzzy reasoning system

The probabilistic reasoning system may be extended to a fuzzy reasoning
system which relies also on an artificial neural network subsystem. Let S be
a knowledge base of propositions {x, .. .,x,}. Each x; assumes one of
labels A;={X, 4, ..., A} (the label set is no longer assumed to be a fixed
set). For each i, we define a fuzzy subset A; of A; which is a mapping from
A; to [0, 1] representing the degree of compatibility of A (i) in A, with x,. For
each pair {x;,x;} (i, j distinct), we define a fuzzy subset A;; of A, x A; which
represents the degree of compatibility of A (i) to x; with A’ (j) to x;. Similarly,
we may define fuzzy subsets A, and etc. for triples and other tuples to
represent compatibilities of higher-order networks (sigma-pi networks [17]).
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Similarly, the interaction with external worlds (human-machine interface)
is through a symbolic (or Al-based) reasoning subsystem. At the initial stage,
the fuzzy value A;(A) is cither estimated by the user or is provided by the
symbolic reasoning scheme. Now the initial fuzzy values (evidences) go
through a constraint satisfaction checking by the artificial neural network
subsystem. This is a relaxation scheme which iterates the process until the
convergence to final fuzzy values is reached. The final fuzzy values are sent
back to the symbolic reasoning subsystem for either interaction with external
worlds or further symbolic reasoning. Thus, evidential reasoning is carried
out by the artificial neural network subsystem.

The relaxation scheme is described as follows. An initial assignment of
fuzzy values { A{” (M)} to {x;} is given. A relaxation operator R is defined
to transform one set { A®(A)} of fuzzy values to another set [AETD) .
The limit { AP (M)} of {AP (M)} gives the crisp (either 0 or 1) labeling under
compatibility constraints, as k approaches to infinity. In reality, we expect
the limit to be attained after a finite number of iterations. The update
equations of the relaxation operator R is defined as follows.

A¥*+D (A)=min[1, max (0, A® )+ 59 L
s = )’Z‘ (Ay () +AAR (A, 0) AP (M),
s
AAE (O M) =ay AAY (0, M)+ by; AFFD ) AR ),
where s; is the support function, A and AA;; are weight and its increment
respectively, and j-indices are the indices of source nodes leading to the i-th
node. ¢;; and b;; may be adjusted for convergence results.

In practice, the limit { A{ (1)} may not be unique (we are not getting a
crisp labeling). The multiple labelings are sent back to the symbolic reasoning
subsystem so that its knowledge base can select an appropriate result for
further reasoning.

7. A dynamic knowledge acquisition system DYKAS

DYKAS, a knowledge acquisition system that receives inputs from and
generates outputs to an external world and forms new pieces of knowledge
from existing knowledge and input information, is being developed. The
system is described as follows:

This system has deductive and inductive capabilities. From input data, new
concepts and propositions are formed through inductive clustering algorithms.
However. the consistency of newly formed propositions with the existing
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DYKAS (Dymamic Knowledge Acquistion System)

inputs

OUpU; ARTIFICIAL NEURAL NETWORK
PROCESSOR

Figure 8. DYKAS: A knowledge acquisition system
using artificial neural networks.

knowledge base is a question that can not be addressed by traditional Al

learning?y algorithms. The artificial neural network subsystem supports the
constraint satisfaction requirement.

. The knowledge base of the system is encoded in a dynamic collection (over
time £) of cognitive maps. These cognitive maps are temporal cognitive maps.
Let {x; (D), ...,x,(0), ...} be a collection of propositions over time ¢, each
of w.hich may assume a finite set A, (¢) of labels (or semantic va]ues)’. The
relatllo‘ns among these propositions are represented by arcs in temporal
cognltlye maps. Under this dynamic assumption, label sets A,(f)’s vary
accor‘dmg to time z. This implies that semantic values of each plroposition
vary in time. For instance, a proposition, such as “it is raining”, may change
from true to false alternately for different hours in one day. Also, the intensity

va?ue of a pixel in the image frame of a video camera varies along the time
axis.

For each ¢, we have a mapping (or a fuzzy set) A,(?) from A,(¢) to the

real numbers R. It gives the certainty factors of labels in A,(z) for the

Proposition x;(1). A state of the knowledge base of temporal cognitive maps
is

AM=A@D....,AQ0,...)

w.hich evolves with time ¢. Temporal relations in cognitive maps are given by
dll.‘CC.th arcs. {x: (), xj(t)} which are assigned link weights. Over time ¢,
existing relations may disappear, and new relations may emerge. Similarly
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Figure 9. Relaxation operator R and temporal operator T form
two degrees of freedom in DYKAS.

nodes x’s may disappear or be idle, and some idle nodes may become active
again.

The relaxation scheme is described as follows. For each fixed time step ¢,
the relaxation operator R refines the knowledge structure as in the last
section. An initial assignment of fuzzy values { A (1) (M) } to {x;(#) } is given.
The relaxation operator R transforms one set { A® () (A) } of fuzzy values to
another set { A*¥*Y () (M) }. The limit { A (HA)} of {AP(H(N)} gives a
crisp (either 0 or 1) labeling under-compatibility constraints, as k approaches
to infinity. A set of compatibility coefficients { A (r)} which are mappings
from A, (1) X A;(f) to R gives the degrees { A% (1) (A, 1) } of compatibility of
label A’ (£) to x; () with label A (¢) to x;(#). The support s{ (2) (1) is a mapping
from A;(¢) to R which gives the support of new external evidence or internal
state update for label A (¢) at proposition x;(¢).

The support s%¥ (£) (A) at the i-th node is given by
s M=) Y AR (O L) AP (),
i

which is a linear sum of compatibility coefficients of interconnecting propo-
siton-labels weighted by the present certainty values for those labels.

The update equation of the states is defined by
AFFD (1) (M) =min[1, max (0, AP (1) (M) + 5 (1)) W)].
The learning mechanism is provided by an update equation (as fuzzy sets):

AFTD () =f(AP 1), AFTV (0, AP (1),
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where f'is a nonlinear functional or a polynomial mapping. The learning rule
is more general than those in the probabilistic and fuzzy reasoning models
so that more general knowledge acquisition tasks are supported.

The knowledge acquisition system has two operators-the relaxation opera-
tor R and the temporal operator T. In this paper, we shall not discuss T in
detail. After each time step under T, the system generates to the artificial
neural network subsystem an initial state A{® (7). Tteratively, new evidence is
obtained externally from input data or internally using update equations on
the present state with compatibility constraints yielding new states. The
limiting results of the relaxation scheme are passed on to the knowledge
acquisition system as existing knowledge items at time r. Then, the system
moves on to the next time step of reasoning. Overall, the certainty or belief
measure at each node is highly dynamic. Moreover, nodes and links are
dynamically created and detected by the two operators R and T. In a
subsequent paper, we shall present a formal theory of temporal cognitive
maps. Here, we can only describe briefly the issues involved.

8. Conclusion

In our evidential reasoning system, not only new evidences will update the
certainty or belief measures of a collection of propositions, but also the
constraint satisfaction among those propositions in cognitive maps will revise
the measures. This mechanism is somewhat similar to human reasoning which
is an evolutive process converging to the most satisfactory result. Under this
model, inference and causal networks are represented by cognitive maps.
Thus, we have generalized Bayesian networks and probabilistic logic to a
more flexible framework which is realized on artificial neural network models.
Different evidential reasoning algorithms are replaced by a single neural
computing scheme. Finally, we discussed a general knowledge acquisition
system-DYKAS, which uses the relaxation scheme for refining the internal
knowledge structure of temporal cognitive maps.
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Résumé

Smgulari?é et bifurcation sont des notions essenticlles non seulement
e’n magherpatiques, mais également dans la vie quotidienne d':rr:s
lorgan{satlon des mondes physique et biologique. Les déﬁnitiz)ns de
ces notions, leurs principales propriétés sont illustrées dans ce text
par des F:xemples trés variés. Si la singularité est le lieu géométri Xue
ou physique associ¢ a la genése ou a la disparition, la bifurcat(ilorel

décrit les mOddIItCS des tra d q ette u-
1
ranstormations qui advier 1ent en cet sSing

Abstract

Smgularity and bifurcation are essential notions, not only in math

matxgs, but also in the daily life, and in the organization of the-
ph){swal .and biological universes. The definitions of these notionse
their main properties are illustrated in this text through variousj
egampleg If the singularity is the geometrical or physical place asso-
cllated with genesis or vanishing, the bifurcation describes the modali

ties of transformations which happen in the singularity. o

A celui qui serait tenté de se pencher sur cet article, 'auteur ne saurait
trop .recommander la lecture préalable et complémentaire de la fresque phil
so;?hlque cpnstituant la premiére partie de Topologie et Perception [2) pOnO-
tr’anFe d’objets, appelés systémes dans cette revue. On en dégage des ro. ri't’y
genera!es q}li fournissent le soubassement a maintes explicatiori i ir?s
compl:ehensmn renouvelée de nombreux faits de sociétés. On fait a N el dane
cette ¢tude a deux concepts, celui d’extrémalité d’une part, celui E)ii centr:
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