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Abstract

An overview of the main results and methods of reconstructability
analysis is presented. Reconstructability analysis consists of tech-
niques developed for the purpose of analyzing the degree to which a
system is decomposable into a collection of subsystems and, conver-
sely, the degree to which a system is identifiable from a collection of
its subsystems. Reconstructability analysis has been successfully
applied in a number of fields. The intent of this article is to stimulate
both wider application of currently available techniques and research
on open problems in the methodology of reconstructability analysis
itself.

Résumé

Nous présentons les principaux résultats et méthodes de I'analyse de
la reconstructibilité. Ce genre d’analyse fait appel a des techniques
ayant comme but de trouver le degré de décomposabilité d’un systéme
en un ensemble de sous-systémes et, réciproquement, de trouver le
degré d’identification d’un systéme & partir d’un ensemble de ses
sous-systemes. L’analyse de la reconstructibilité s’applique avec succes
4 de nombreux domaines. Nous souhaitons encourager I'application
plus étendue des techniques existantes et aussi des recherches en vue
de la résolution de problémes méthodologiques non réglés.
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6 M. PITTARELLI

1. Introduction

At the highest level of generality, reconstructability analysis may be said
to be concerned with two complementary problems:

1. The reconstruction problem. — To what extent is a given system descrip-
tion inductively inferable from descriptions of subsystems deductively infera-
ble from it?

2. The identification problem. — To what extent do the descriptions of a
given collection of systems determine (deductively) the description of a single
system of which they are each subsystems ?

While recognizing what by now is a commonplace in science, that “the
whole is greater than the sum of its parts”, i.e., that it is (usually) not
possible to infer from detailed knowledge of subsystems similarly detailed
knowledge of a system of which they are parts, practitioners of reconstructa-
bility analysis seek decompositions of systems into subsystems such that as
great a simplification as possible is achieved while keeping the loss of informa-
tion regarding the original system within acceptable limits. Hence the charac-
terization by Conant (1988) of reconstructability analysis as “a form of
enlightened reductionism”.

The origins of reconstructability analysis can be traced to a paper by
W. R. Ashby on “constraint analysis in which a procedure is developed for
determining the degree to which an n-ary relation is decomposable into
subrelations (1964). Ashby (with Madden, 1972) later considered what is
essentially the identification problem for relational systems. (Many results in
relational database theory as well were anticipated by Ashby in these two
papers.) Probabilistic constraints were first considered by Lewis (1959). Proce-
dures utilizing a lattice of possible decompositions of a system described in
terms of a set of variables were first formulated by Klir (1976) and later
elaborated by Cavallo and Klir (1979, 1981 5). Cavallo (1980) was the first
to investigate the probabilistic identification problem, and Cavallo and Klir
(19825b) extended the framework to accommodate possibilistic constraints.
The identification problem for possibilistic systems was treated by Higashi
et al. (1984).

Reconstructability analysis has been employed in a number of fields:
ecological modeling, industrial engineering, computer engineering, and medi-
cal and agricultural research (Bard, 1980 @, 1980 b; Higashi, 1984; Klir, 1986;
Shaffer and Cahoon, 1987; Uyttenhove, 1982). In what follows, a survey of
some of the main results and techniques of reconstructability analysis is
presented with the hope that researchers in a wide variety of disciplines will
find them applicable to their work.
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2. Definitions

For purposes of reconstructability analysis, a system is characteri‘zed .in
terms of a state space that is the Cartesian product of a ~set of ﬁnlt.e
variable domains. The characterization takes the form of a mapping from thls
Cartesian product to a set of real numbers such that the valge of the mapping
applied to a given state tuple indicates the degree to which t?at tuple, or
state, is typical of the states of the system (e.g., the probability that the
system is in that state).

Dermarion 2.1, — Formally, a system is defined as a four-tuple
F=(V, A, dom, f), where

e V is a finite non-empty set of variables (also referred to as observables
or attributes), and V is referred to as the scheme for F;

o A is a non-empty set of finite sets of values called domains;

e dom : V—A is an onto function that associates a domain with each
variable;

e dom(A)= x dom(v), where A SV, is the set of system substates (sub-

ve A
tuples) over variables A [dom (V) is the set of system states, or system tuples];

o for wedom (W), bedom (B), and B = W, w[B]=»5 iff b and w agree on
all attributes in B;

e f:dom (V) — Q, where Q S R, is a mapping characterizing the degree
to which a tuple tedom (V) is representative of the behavior of the system.
Such functions are sometimes referred to as behavior functions and systems
F are sometimes called behavior systems. [For convenience, a total ordering
on dom (V) is assumed, and f is used to denote the correspondingly ordered
tuple of images of the function f. Also, since f determines V, A, and dom,
“f” is sometimes used to refer to the system F.] O

In mathematical terms, reconstructability analysis is concerned with the
relation that holds between a behavior function f': dom (V) - Q and a collec-
tion of projections

s (f) - dom (A) = Q,

where A = V. The value of m, (f)(a), for aedom(A), is a function of
{f(©)|tedom (V), a=t[A]}. The operation defining 7, (/) (@) depends on the
nature of f.
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When fis a probability distribution function,

2 f=1

t e dom (V)

fdom(V)—|0, 1],

the subtuples aedom (A) may be viewed as events equal to the union of

the set of elementary events {f(r)|redom(V), a=[A]}. By the axioms of °

probability,

s () (@)= Z f.

tedom (V), t[A]l=a
When f'is the characteristic function of a relation,
fidom(V)— {0, 1},

where f(£)=1 is interpretable as the statement “the system has been observed
to be in state £” or “sis a possible state for the system” [note that the
possibility of each substate xedom(v) for all veV does not imply the
possibility of each system state redom (V)], and f(1)=0 as its negation,

T (/) (@)= max  f(2).

tedom(V), t[A]l=a

Such systems are referred to as “relational” or “set-theoretic”. (Observe that
a relational database instance is a collection of relational behavior systems.)

When [ is a possibility distribution, f: dom(V)— [0, 1], the projection
formula coincides with that for relational systems (Cavallo and Klir, 1982 b).
Since {0, 1} <0, 1], a relational system is a special type of possibilistic
system. Relational systems are sometimes referred to as “crisp possibilistic”

systems and their characteristic functions as “crisp possibility distributions”
(Klir and Folger, 1988).

Example 2.1. — The table below illustrates three behavior systems derived
from the same frequency distribution n : dom (V) — N—a probabilistic system

(for)> @ possibilistic system (fp0)> and a relational system (f,), calculated from
n via the formulas

Tu=n 3 n(),

t € dom (V)

oD =n(0)] max_n(o),

t e dom (V)

S (H)=max (1, n(2)).
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(See Klir 1989, for discussion of information-preserving transformations
between different types of behavior functions.)

A B C n{t) o) Joo(D) AU
b ¢ 125 0.125 0.33 1
ay 1 1 02 |
a by I 75 0.075 .
gl b, ¢y 50 0.05 0.13 I
1 b, ¢ 50 0.05 0.13 1
ay 2 2
a b, o 375 0.375 1.0 1
“ b, o 225 0.225 0.6 I
'2 b ¢ 50 0.05 0.13 1
N ; ) 0.05 0.13 1
a, by ¢, 50 R .

(As discussed by Jones [1985], arbitrary functions f dom'(Y) - Q, inpluding
frequency distribution functions, may be analyzed using existing techmquegof
reconstructability analysis, for example, by transforming them to probability
distributions. However, for arbitrary functions, the results of such analyses
cannot be interpreted in the same manner as those for the standard types of
behavior functions, ¢.g., in terms of conditional probabilistic independence
relations among variables.) For the systems F above, V= rA,.B, .C},
A={{a,, a,}, { b1, b5}, {c1, ¢y }}, dom(A)={a,, a,}, etc. The projections
of the functions f onto the set {B, C} < {A, B, C} =V are the functions
Ty, ¢y (f) below:

B C n(B,C)(./;:r) (@) g, ¢y (foo) (@) nm,(‘;(fr) (@)
by ¢ 0.5 1.0 1
by ¢y 0.3 0'6, 1
b, ¢y 0.1 0. 1% 1
b, ¢y 0.1 0.13 [

O

Each of the systems m g ¢,(F) with behavior function 7 ¢)(/) is a
subsystem of the associated system F.

DeriNITION 2.2, — The system 7, (F)=(A, A’, dom’, f) is a subsystem of
F=(V, A, dom, f) if

e ACV;

e dom’: A — A'is onto and dom’ (v)=dom (v), for each veA;

o f=my(f) O

A collection of behavior systems is a structure system.

DeFNTION 2.3, — S={F,, ..., F,} is a structure system iff
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(i) each of Fy, ..., F,, is characterized by a function of the same type
(e. g., a probability distribution function);

(i) veV; NV, implies dom, (v) =dom; (v).

The set X={V,, ..., V,}, where V, is the scheme for F,, is the structural
scheme (or structure) for S. 0O

Example 2.2. — The table below represents a structure system S derived
from the system £, of Example 2.1 as S= {5, (for): M5, c; (for) }:

A B Tam (for) (1) B C Tyg.cy (for) ()
ay b, 0.2 by ¢y 0.5
a, b, 0.1 b, ¢y 0.3
a, by 0.6 b, ¢y 0.1
a b, 0.1 b, c, 0.1
Derinition 2.4, — Suppose that V is a set of variables. The set
X={Vy ..., V,}is amodel of V if

Hv,u...uv,gVv;
(i) i#j implies V, ¢ V.
If the condition
(i) ViU ... UV,=V is also met, i.e., X is a cover of V, then X is a
reduced hypergraph (Berge, 1973) over V. [
The structure {{ A, B}, { B, C}} of Example 2.2 is a model of (actually,
a reduced hypergraph over) the set { A, B, C}.

A behavior function may be projected onto a model of its scheme. If
X={Vy, ..., V,} is a model of the scheme V for f, let ny (/) denote the
set of projections of f onto the elements of X:

tx ()= {1y, (/) - s Ty, (N}

m

Notice that ny (f) is a structure system.

The identification and reconstruction problems may now be more precisely
characterized in terms of these operations. For the identification problem, a
structure system S={F, ..., F,} is given, and the task is to characterize
in various ways the set of behavior systems / such that my (f)=S: e.g.,
calculate a measure of its size, devise an efficient test for membership in the
set, etc. (The scheme of F is usually taken to be the union of the elements of
X, but need not be.) The reconstruction problem is that of identifying a
structure X, or set of structures X, such that X is as simple as possible (e. g.,
the average cardinality of its elements is minimized) but the information loss
when f'is replaced by its projection onto X does not exceed some maximum
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allowable value. These two complementary problems will now be separately
considered in detail.

3. Identification

It is sometimes the case that data regarding some phenomenon are available
not in the form of a single behavior function over the set V of variables of
interest, but in the form of a structure system S. This may be the case for
various reasons: S may represent the results of separate partial studies con-
ducted independently which it is desired later to integrate; for some system
it is technically not feasible to observe simultaneously behavior over all of
the variables in terms of which it is defined, etc.

The identification problem encompasses all aspects of inference from a
structure system S with structure X to behavior functions f such that
S=my(f). In extreme cases, there is a unique f such that S=mny(f). The
function f is then said to be identifiable from X (or S). This situation is
extremely rare (Madden and Ashby, 1972; Pittarelli, 1989a). There is, in
general, a set of functions f such that my (f)=S.

DeFinition 3.1, — The extension of a structure system S= {f}, ..., f,,}
over V, where the structure X={V,, ..., V, } of S is a model of V, is the
set

Ey(S)={f|nx(f)=S and f/: dom (V) - Q}.

When X is a cover of V, E (S) may be abbreviated E (S), and is referred to
as the reconstruction family of S.

When a structure system S is derived from projection of a given behavior
function onto a model of its scheme, it is guaranteed that the reconstruction
family of S is non-empty: clearly,

feEy (ny (/).

This is not guaranteed when a structure system represents independently
derived behavior functions which it is desired to combine. There are many
reasons why this may be so: the behavior functions may represent the opinions
of different experts, or the same expert in multiple contexts (where the
different elements of a structure system represent different contexts); measur-
ing instruments (e.g., counters) vary in sensitivity, etc. Thus, empirically
derived structure systems are likely to be inconsistent.

Two types of inconsistency are distinguished.
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DeriniTion 3.2, — A system S with structure X = Vi, ..., v, } is locally
inconsistent iff

Tin v (f) # 1y, \7 s

for some pair (i, j) for which V,; N V,#J.
(A structure system is locally consistent iff it is not locally inconsistent.)
A structure system S is globally inconsistent iff E(S)=gf. [J
Global consistency implies local consistency, but not conversely.
Approaches to inconsistency resolution are explored by Mariano (1987).

They are roughly characterized as follows. Given an inconsistent structure
system S={f,, ..., f,,}, find behavior functions f*, ..., /" such that

BU{/H a2

and

m

> d(fi f)
i=1

or

max  d(f, f)

ief{l, ..., m}

is minimized, for some suitable measure d of dissimilarity between behavior
functions. For large systems, such procedures are expensive. An alternative
approach would be to replace the single-number values of (possibilistic ana
probabilistic) behavior functions with intervals. Details of this method are
beyond the scope of this paper, and are discussed in (Pittarelli, 1989 5).

The degree to which an arbitrary fe E(S) is identified by knowledge of S
may be characterized in various ways. At the simplest extreme, it is possible
to determine whether or not f is strictly identifiable from S. It would be well
at this point to examine the mathematical structure of reconstruction families
E(S) for each of the three types of behavior functions under discussion:
probabilistic, possibilistic, and relational.

When S consists of probability distribution functions, E(S) is the convex
polyhedron of solutions to a system of linear equations and inequalities. This
follows from the nature of the projection operation. For the structure system
S=ma 8y (8 cy(fpr) of Example 2.2, E(S) is the set of solutions p to the
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system

playbiey+pla bic,)=02
pla byc)+pla b,c,)=0.1
playbyc)tplay b, c,)=0.6
playbye)+playbyc,)=0.1
playbye)+playbyc,)=0.5
plagbicy)+playbycy,)=0.3
plagbye)+play,b,c)=0.1
pla; bycy)+pla,bycy)=0.1
p(.)z0.

(Observe that any such system of equations implies that

> r(=1) O

t € dom (V)

Each (sub) state aedom (J) in the domain of a (sub) distribution in S with
scheme J contributes exactly one equation to the system, and that equation
constrains each of the tuples tedom (V) such that ¢[J]=aq, according to the
definition of projection.

The equations may be used as a test for whether a distribution p (elicited
from an expert, for example) is in fact a member of E(S). If any of the
equations is violated, p is disqualified. Such an algorithm could be an aid in
the assessment of joint probability distributions from marginal probabilities
(Moskowitz and Wallenius, 1984).

Via linear programming, bounds on components p () as p ranges over
E(S) can be determined. To illustrate, the bounds for tuples @, b, ¢, and
a, by c, are:

03=p(a,b,¢,)=0.5
and
0.1=Zp(a,b,c;)<0.3.

These two tuples cannot achieve ecither their maximum or their minimum
values simultaneously without violating the third equation,

playbye)+playbiey)=0.6.




14 M. PITTARELLI

E (S) is always a subset and usually a proper subset of the set of distributions k

satisfying each of the bounds. Thus, a test utilizing them, while more efficient,
provides merely a necessary condition for membership in E(S).

It is also possible using linear programming techniques to enumerate all
of the vertices of E (S) (Pittarelli, 1989 @). Any pe E(S) is a convex combina-
tion of these distributions. Let ey, ..., ¢, denote the (finite) set of vertices
of E(S). Then

peE(S) implies p=A e, + ... +A. e,

k
for some Ay, ..., 4,20 such that > A;=1. However, it is possible for

i=1
structure systems involving only a few variables, with small domains, to have
hundreds of vertices.

Whereas probabilistic reconstruction families are sets of solutions to
systems of equations of the form

2 FO=fi(a),

tedom (V), t[Vil=a

the equations defining a possibilistic reconstruction family are of the form

max f(O=fi(a).

tedom (V), t[Vil=a

For the data of Example 2.1, E(ny4 gy, (8, c) (fp0o)) 18 the set of solutions to

max { f(a; by ¢,), flay by Cz)} =033
max {f(UL byey), flagbycy) } =0.13
max { f(a, by ¢,), flay byc;)} =013
7()=z0.
In Higashi et al. (1984), it is shown that such systems are a special type of
fuzzy relation equation, and methods for characterizing solution sets of such

equations (Higashi and Klir, 1984) are applied to the possibilistic identifica-
tion problem. Define a partial ordering = on possibility distributions as

fzf iff f()<f (), forall redom(V).
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A‘possibilistic reconstruction family has a unique maximum element, f, under
this ordering,

JeE(S) implies f <

and a finite number of minimal elements,[‘:

for no f# fis f 2 f.

Any component f(f) of the maximum element is quickly computed as the
minimum of the right-hand-sides of all the equations constraining ¢. For the
example, fis the distribution

A B C T
a, by ¢y 0.33
a, b, [ 0.33
a, by ¢y 0.13
a, b, ¢, 0.13
a, by [ 1.0

a, by Cy 0.6

a, b, ¢ 0.13
a, b, [ 0.13

Notice that f,, of Example 2.1 is (necessarily) an element of E(S), and
Jro > f. Let E(S) denote the set of minimal elements of E(S). In (Higashi
et al., 1984) it is proved that fe E(S) iff

f; 2 /2, for some f;e E(S).

(However, just as generation of all the vertices of a probabilistic reconstruc-
tion family is extremely expensive, it is also computationally difficult to
enumerate E(S).)

Since a relational system represents a special type of possibilistic system,
possibilistic techniques may be used to characterize relational reconstruction
families. Relational behavior functions take values in the finite set {0, 1}
and therefore relational reconstruction families are always finite. Cavallo
and Klir (19815) first studied the algebraic structure of relational E(S),
characterizing an E(S) in terms of a unique maximum element and a finite
set of “irredundant” (i.e, minimal) elements under the partial ordering <,
the ordinary subset relation between sets of tuples. Clearly, the representation
in terms of the partially ordered set (P(dom (V)), £) is isomorphic to that
in terms of ({f]/: dom (V) {0, 1}}, =}.

Measures of the degree to which a single fe E (S) is identifiable from S have
been referred to as identifiability quotients and measures of reconstruction
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uncertainty (Cavallo and Klir, 1981 b; Pittarelli, 19894). As the size of an

E (S) increases, the value of an identifiability quotient decreases and the value

of a measure of reconstruction uncertainty (from which identifiability quotient
values are calculated via a particular transformation) increases. Because

measures of reconstruction uncertainty are primary, the discussion will be

restricted to them.

For any measure, m, of reconstruction uncertainty, a reasonable require-

ment is that
E(S) € E(S') implies m (E(S)) < m(E(S")).

This, in fact, is the only formal restriction placed on such measures. The
choice of a particular measure (or measures) depends on a number of factors:

whether a single fe E(S) is actually to be estimated, or the entire set E(S) is .
to be utilized instead (Pittarelli, 19894, 1990); whether or not interest is

concentrated on only a few of the tuples 1€ dom (V), etc.
For relational systems, Cavallo and Klir (19814) proposed the logarithm

of the cardinality of E(S). For possibilistic systems, Higashi e al. (1984)

essentially use the measure

m(E(S) =]+ max f()~ min f(2)).
¢ fEE®) SEE®)
Both of these clearly satisfy the subset monotonicity requirement.
Most of the work done on measures of reconstruction uncertainty has
concentrated on probabilistic systems (Klir, 1986, Pittarelli, 1989 ).
When a single distribution p*eE(S) is estimated, it would be useful to

have an indication of the degree to which the estimate may be in error. Let
R (E(S)) denote the estimation radius,

R(E(S))= max d(p, p*),

peE(S)

where d is a suitable distance measure. When d is convex (Euclidean distance,

cross-entropy, etc.), there exist mathematical programming methods for:

calculating R. Similarly, a diameter may be calculated as

DES)= max d(p, p’).

p, P eE(S)

Clearly, R(E(S)) =D (E(S)) and (letting 0/0=0) the ratio R/D takes values .
between 0 and 1, where larger values represent greater eccentricity of the
estimate p*. (Note that such analyses presume that the peE(S) are each
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ly likely to be the unknown distribution of which the elements of S are

equal
projections.)

Measures concentrating on individual tuples edom (V) are also useful.
For Q < dom (V) let

ro(EE)=1/{Q] T ( max p(n)— min p(1),

teQ peE(S) peE®S)

which may be calculated by linear programming. When Q=dom (V), this
quantity is the average uncertainty per tuple for pe E(S) (Dalkey, 1985; Klir,
1986; Pittarelli, 1989 @) and is abbreviated r(E(S)). (Variations on this meas-
ure and additional measures are discussed in Pittarelli, 1989 a.)

Example 3.1. — Let X={{A}, {B, C}} and Y={{A, B}, { B, C}}. For
the data of Example 2.1, r (B (ny (f,0))=0.25 and
r(E (ny (f,)))=0.1875. 0

This illustrates a situation that holds more generally.

DermviTion 3.3 (Cavallo and Klir, 1979). — A structure X is a refinement
of structure Y iff for every V. €X there exists a V,e Y such that V. g V,. O

Turorem 3.1 (Higashi, 1984; Pittarelli, 1990). — XZY implies
E(ny () € E(ng (/). U
COROLLARY 3.1. — If m is a measure of reconstruction uncertainty and

XY, then m(E(ny (N)) sm(E(ng (). O

Thus, if one is performing an investigation of a system defined in terms of
variables V which it is impossible to measure simultaneously, one should
attempt, to the degree to which it is feasible, to obtain data over as unrefined
a structure as possible.

When a reconstruction family E(S) contains more than one element, the
practice has been to select a single feE(S) as a best estimate of the actual
(but unknown) behavior function of which the elements of S are projections.

For relational systems, the unique maximum element with respect to the
subset relation is selected (Cavallo and Klir, 1981 5). This relation contains
all of the overall tuples ¢ such that for each element F,; of S the projection
t[V]] is present. Elimination of any of these tuples would amount to the
introduction of a constraint among the redom (V) that is not implied by S.

In the reconstructability analysis literature, estimates that do not assume
any constraint beyond that implied by the available data are referred to as
unbiased reconstructions, but not in the statistical sense of the term “unbi-
ased”. Any unbiased reconstruction uniquely maximizes within E(S) a meas-
ure of uncertainty appropriate to behavior functions of its type. For relational
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systems, the unbiased reconstruction maximizes the Hartley information (Klir

and Folger, 1988):

1(f)=log, Y./ (1.

The unbiased relational reconstruction r* may be calculated in various ways
(Cavallo and Klir, 19815). For S={r,, ..., r,},

()= min {r;(a)|a=1t[V]}.

For possibilistic systems, the unique maximum element with respect to the
~

maximizes Higashi and Klir’s U-uncertainty measure for possibility distribu-
tions (Higashi and Klir, 1983 a):

r—1

U(f)=1/1f Z (lk+1'“lk)10gzlc(f> lk+1)|s
k=1

where [, =0,1,, ..., =/, arc the distinct values taken by any f(¥), aug-:

mented if necessary by /, =0, in increasing order by subscript (/, denotes the
largest possibility value, ), and c(f, /;) is the set of all values /() such that
f(®)z1,. For S={f,, ..., f}, f may be calculated as

J(0=min{f(a)|a=1[V]},

which coincides with the relational formula. Further, the U-uncertainty meas-
ure reduces to Hartley information in the “crisp possibilistic” case

foe{o,1}.

The situation is more complicated for probabilistic systems. In practice,
the maximum entropy element p* of E(S) is selected: H (p*)= max H(p),

peE(S)
where H is the (Shannon) entropy measure

H(p)=—Yp®log,p (2.

Since E(S) is convex, this element is unique (Jaynes, 1984). The fact that
the constraints subject to which entropy is to be maximized are marginal
probabilities (projections) permits the use of “‘probabilistic join” procedures

for calculating p* that, although computationally quite expensive, are more
efficient than the optimization techniques required to maximize entropy

subject to arbitrary (convex or even linear) constraints. Such procedures were

2 relation, f, is selected. It is straightforward to show that 7 uniquely
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first studied by Deming and Stephan (1940), Brown (1959) and Lewis (1959).
They are first discussed in the context of reconstructability analysis by Cavallo
and Klir (1981a). Recent algorithmic advances have been made by Tian
(1988).

In the simplest case, S consists of two distributions: S= {p1, p2}. The
pairwise join procedure is then defined as

pE(O)=p, (@)% p, ),

where
a=t[V,] and b=1t[V,], if V,NV,=¢;
and
pH(O=pi(@)*p, (b) > P2(0),
cedom(Vy),c[VanVi]=b[VanVq]
otherwise.
When the structure X={V, ..., V,} of S is loopless (i.e., a-acyclic)

(Fagin, 1983), an ordering of elements of S can be found such that p*
may be calculated by repeated application of the pairwise join procedure
(Krippendorff, 1986; Tian, 1988). A simple test for looplessness is provided
by the algorithm below.

ArcoritaMm 3.1 (Fagin, 1983). — Apply repeatedly in any order until
neither has any effect:

(1) If v appears in only V,, delete v from V,.
(2) If V; £ V;, where i #/, eliminate V.. O

The algorithm terminates in the structure { ¥} if and only if the original
(input) structure is loopless. A more expensive iterative procedure must be
used for structures that are not loopless (Cavallo and Klir, 19815). This
procedure is also used when only some, not all, of the substate probabilities
are given (Jones, 1984). (The iterative procedure still is less expensive than
maximizing entropy by mathematical programming.)
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Example 3.2, — For the structure system of Example 2.2, the maximuml
entropy element of E(S) is

A B C PE()

ay b, ¢ 0.125 =0.2x0.5/(0.5+0.3)
a, b, I 0.075 =0.2x0.3/(0.54+0.3)
a, b, ¢ 0.05 =0.14+0.1/(0.1+0.1)
a, b, ¢, 0.05 =0.01x0.1/(0.1 +0.1)
a, b, ¢ 0.375 =0.6%0.5/(0.5+0.3)
a, by I 0.225 =0.6%x0.3/(0.5+0.3)
N b, ¢y 0.05 =0.1x0.1/0.1+0.1)
a, b, ¢, 0.05 =0.1%0.1/(0.1+0.1)

Estimation by means of the various probabilistic join procedures is usually
Justified by appeal to E. T. Jaynes’ maxinum entropy principle: “When we
make inferences based on incomplete information, we should draw them
from that probability distribution that has the maximum entropy permitted
by the information that we do have (Jaynes, 1982).” With information
quantified as negative entropy, selection of p* amounts to assuming no.
information beyond what is implied by the given marginal probabilities.
Thus, p* is an “unbiased” estimate of pe E(S).

Additional arguments in favor of selection of the maximum entropy element
have been made: it is in some sense a maximum likelihood estimate (Jaynes,
1979, 1982); failure to maximize entropy in making an estimate violates
certain axioms of inductive inference (Shore and Johnson, 1980); the behaviorki
of any man-made probabilistic system coincides with the probabilistic join.
of its subsystems (Cavallo and Klir, 1981 b). These and the maximum entropy
principle generally are discussed critically in (Pittarelli, 1989 a).

Alternatives to maximum entropy estimation have been proposed and
investigated theoretically and empirically (Pittarelli, 1989 4), but have not
been used in practice. Cavallo and Klir (1982 a) proposed what has become
known as a “least-risk” or “minimax” estimate: for some distance measure
d, select p* such that

min - max d(p, p)= max d(p*, p).
PEE®) peE(@S) P eE()

Thus, p* minimizes the maximum error, measured by d, when it is selected
as the distribution p such that S=mny(p). For certain distance measure
techniques from location theory may be used to calculate such estimates. The
centroid (center of mass) of E(S) is also a reasonable estimate. This distribu-.
tion minimizes the expected value of the squared error of estimatio
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Z(p*([)—p([))z. Experimental studies indicate that the maximum entropy

t

element tends to be very close to the centroid of E(S) (Pittarelli, 1989 a).

4. Reconstruction

Most of the interest in reconstructability analysis has been generated by
the reconstruction problem, and it is this subproblem that is algorithmically
the better developed.

For the reconstruction problem, a behavior function f over dom (V) is
given and a structure X over V is sought such that the complexity of X is
minimized while minimizing d(f, J(ny (f))), where J is the join operation
producing the maximum (Hartley, U-, or Shannon) uncertainty element of

- the structure system 7y (/) and d is a measure of information distance, i. e, a
- measure of the amount of information that is lost when fis replaced by the
_join of its projections onto X, which is the maximum loss of information

possible when f is replaced by feE(S). In this context, a structure X is
referred to as a reconstruction hypothesis. The relative validity of two compet-
ing reconstruction hypotheses X and Y is determined by comparing the
information distance values d(f, J(ng(f))) and d(f, J(ny (/). Structures
may be ordered by complexity in a number of ways. The refinement ordering
gives a particularly useful and quite natural complexity ordering: X is more
complex than Y if Y <X. Not all structures over a set of variables V are
comparable under the partial ordering <. However, it will be seen that the
refinement ordering has properties relative to measures of information loss
that facilitate the search for acceptable structures.

Following Gaines (1977), Klir (1985) proposes that a solution set for the
reconstruction problem be defined in terms of a joint preference ordering <*,

- where

X=*Y  iff XY and  d(f T (D) S T(ny ().

For a given set of reconstruction hypotheses M, the solution set is then the
sct of minimal elements of M with respect to <*, which are referred to as
admissible solutions.

Ideally, for a given structure X, no information is lost when f'is replaced

_ by its projections onto X. In this case, fis said to be reconstructable from X.

DEFINITION 4. 1. — fis reconstructable from X iff f=J(ny (/). O

When a behavior function [ is reconstructable from a structure X, X is
usually interpreted as indicating something of the pattern of interaction
among the variables V, For example, in the case of probabilistic behavior
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functions, it is possible to show for loopless structures X that for any pair of

elements V,, V;eX such that V, N\ V;# (¥, the variables V, are conditionally

independent of the variables V;, given the variables V, M V. Further, for any

type of structure, loopless or not, Higashi (1984) has shown that if the set of:

variables of actual interest is some subset Q < V, then if p is reconstructable

from X, attention may be restricted just to the set of variables in the

neighborhood 7 (Q, X) of Q, where
n(Q X)=U{V,eX|V.NQ# T ).
When p=1 (nx (p)),
HQ|V-Q=H(Q|1(Q, X)-Q),

where H(V,|V)) is the conditional entropy of V,, given V; (Klir and Folger,
1988). As yet, no studies have been conducted to determine the degree to

- which such relations (of independence or irrelevance) hold when p is only

approximately reconstructable: 0 < d(p, J (ny (p))) < &, for some small . Since

it is usually the case that some information is lost when a distribution is reasonable property (for example, the Hamming distance when applied to

replaced by any of its projections, investigation of this issue should receive
high priority among topics for future research.

When f is relational, it seems reasonable to quantify information loss in .
terms of the number of tuples on which functions f and J (ny (f)) disagree,

i.e., as the ordinary Hamming distance:

d(f; Trx (D)= LI (O —T(rx (M) (1)].

Note that, since /2 J (nx (f)), this may be reexpressed as

d(f, T (/M= LT (g (1) () = 2 f (0.

For possibilistic behavior functions, the general measure of information
distance derived by Higashi and Klir (1983 b) degenerates to

d(fs I (NN =U (nx (/N = U(f).

Information distance takes a similarly simple form for probabilistic

functions. A measure of distance between probability distributions that is
theoretically very well justified is the cross-entropy (directed divergence,
relative entropy):

d(f, /)= L1 () log, f(Df (1).
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This function is not defined for arbitrary distributions f, /' over V unl.ess
(using the convention 0log, 0/0=0) /' (1)=0 implies f(£)=0. This condition
holds, however, when f'=1J (nx (/) (Higashi, 1984). Higashi also proves that

d(/, Iy (N =H{ (7 (1))~ H ().

Thus, to compare a set X;, ..., X, of reconstruction hypotheses for
behavior functions of any of these three types, it is not necessary actually to
calculate the information distance. It is sufficient merely to calculate and

. compare the values S I (mx (), U (g (/) or HU (mx ().

Fach of these information distance measures is monotonic with respect to
the refinement ordering:

X<Y implies d(f, J(ry (/) = d(f, I (mx (1))

In other words, the information loss never decreases when a structure is
replaced by a more refined structure. Not all measures have this intuitively

probabilistic behavior functions). It follows from Theorem 3.1 that any
function d that reduces to h(J (e (SN —h(S), where
h(J (g (/)= max h(S), will satisfy this requirement.

JeE®)

Without question the most serious challenge facing researchers in recon-

‘; structability analysis is the development of algorithms for reconstruction

hypothesis search with acceptable performance characteristics when applied

to large systems. Even for systems with only a few variables, exhaustive

comparison of all hypotheses is out of the question: for |V§ =17, there are

- already over 2x 10'2 different structures covering V. Most of the strategies

in use at this time are heuristic; they are not guaranteed to generate all and
only members of a particular  solution set (say, with

M= {X: max|V,| S£k}), but have been shown empirically to perform very
VeeX

well (Conant, 1988; Hai and Klir, 1985; Klir and Parviz, 1986; Klir and
Uyttenhove, 1977).

Certain of the more exhaustive procedures, for example, those proposed
by Cavallo and Klir (1979), consist of subprocedures that may be classified
as either global or local and as involving either aggregation or refinement.
Usually, the overall process is one of refinement, involving some stopping
criterion: an absolute value of information loss that is not to be exceeded; a
value expressed as a percentage of the maximum possible loss, d(f, J (nx (/))),
where X is the most refined structure in the lattice; detection of a sharp
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increase in information loss from one “level of refinement” to the next, etc. R
In the case of a threshold criterion, the monotonicity property (Theorem 3. 1)

guarantees that further refinement will fail to locate acceptable structures. !
Stopping criteria based on differences in d from one step to the next seem to
be very well justified by the results of experimental studies of their accuracy
(Hai and Klir, 1985; Klir and Parviz, 1986).

Before looking at these procedures in any greater detail, it is necessary to
discuss briefly the algebraic structure of the set of all reconstruction hypo-
theses over a set of variables V. (To simplify the discussion slightly, attention | \
will be restricted to covers of V.) /

Let G denote the set of all structures over a set V. Then the pair (G, <),
where < is the refinement relation, is a lattice. Each pair of structures has a
least upper bound (least common aggregate) and a greatest lower boun
(greatest common refinement), and there is a universal upper bound, {V}
and a universal lower bound, {{v}|veV}.

Figure 1 is a Hasse diagram of the lattice of structures ove
V= {vl, v,, v3 }. The rectangles in a block diagram depicting a structure X
represent elements V;eX. Each line in a block diagram represents a singl
variable v;e V. The line for v; intersects the rectangle for V, iff v;eV,. A
arrow connecting the block diagrams for a pair of structures X and Y, wher
X’s diagram is above Y’s, indicates that Y is an imumediate refinement of X
(and, conversely, that X is an immediate coarsening, or aggregate, of Y).

Y < X and there is no Z distinct from X and Y such that Y £Z =< X.

Associated with any structure X in G is an undirected graph defined b
the binary relation on V:

v; Ro; iff there exists a V, € X such that v, v;€V,.

It is possible for two distinct structures to have identical associated graphs
For example, {{v}, v,, v3}} and {{v}, v;}, {9, v3}, {v}, v3}} are bot
associated with the complete graph on {v,, v,, v3 }. For any equivalence clas
of structures with the same associated graph, there is a unique C-structur
defined as the set of all and only the maximal compatibility classes of th
graph. (Note: the problem of generating the C-structure associated with ¢
given graph is NP-hard [Garey and Johnson, 1979].) Figure 2 illustrates tw
equivalent structures, one of which is the C-structure for the equivalenc
class of which they are both members, together with their associated graph )
(self-loops are not drawn). Figure 2.
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also a lattice, a sublattice of (G, <). Since |C| < |G|, for | V| > 2, it might
appear reasonable to search the set of C-structures exhaustively and then,
for each member of the solution set, explore its G-structure neighborhood, the
set of G structures that are (immediate or nearly immediate) refinements or

3.5% 10'3 C-structures.

Instead, a heuristic global search of (C, <) is conducted (by refinement,
although global aggregation is also feasible), followed by local G-structure

structure) refinements of a given C-structure X with associated graph g are
those C-structures associated with each of the graphs resulting from removing
a single edge from g. Since the maximum number of edges (not counting
self-loops, which are not removed) in such a graph is | V| x (| V|—1)/2, there
are this many levels of refinement in the C-structure lattice for a set of
variables V.

The breadth of such a heuristic search may be either wide or narrow. At
the narrowest extreme, only the best structure at any level with respect to
information loss is chosen to refine further. The problem with this option,
efficient though it may be, is that it is possible that even though structure X
is superior to structure Y at the same level of refinement, there may exist an
immediate C-structure refinement of Y that is superior to all of the immediate
C-structure refinements of X (Cavallo, 1989). At the opposite extreme, all
structures at any level are refined, which amounts to exhaustive search of
(C, =). In practice, a compromise is made, and the best k structures at any
level, or those with associated information loss within a certain range of that
associated with the best structure, are refined. [It should be noted that only
very recently have algorithms been devised for refining a set of k structures
at a given level without generating duplicate structures at the next level
(Cavallo and De Voy, 1989). Previously, use of a costly comparison and
removal procedure was also required.]

Refinement terminates when some stopping criterion is met, and may
be followed by local G-structure refinement and aggregation procedures.
Refinement and aggregation procedures are discussed in considerable detail
by Cavallo and Klir (1979, 19824) and in forthcoming papers by Cavallo
(1989) and Cavallo and De Voy (1989).

More radical heuristics have been proposed. For example, a procedure
invented by Conant (1988) for probabilistic systems may be roughly described

Let C denote the set of all C-structures over V. Then the pair (C, £) is_

RECONSTRUCTABILITY ANALYSIS: AN OVERVIEW 27

as follows. For each variable veV, a dependency set D(v) € V— {v} is

determined such that, where T is the transmission measure

. T@:A)=

aggregates of it. This is not feasible either. The size of C grows exponentially -
with the size of V, as |C|]=20VF=1YD2 For |V| =10, there are over

refinement and aggregation. The chief virtue of the C-structure lattice is the

(conceptual) sinplicity with which refinements may be generated: the (C- Z= {{v} UD()

n{v;UA(P)(x» l)

)

x e dom (v), t € dom (A)

log, 7,y 6 a (P) (%, D/, () () a () (D),

() QD@ implies T (v : Q) is significantly smaller than T (v : D (v));
(i) D (v) € Q implies T (v : Q) is not significantly greater than T (v : D (v)).

A graph g=(V, E) with edge set E is constructed from the set
veV} as (v, v)€E iff there exists an element WeZ such

that v, v;e W. The C-structure associated with this graph is posited as a
reconstruction hypothesis, the structure neighborhood of which may then be
searched.

Frequently, only a very restricted subclass of the set of all G-structures
may be recognized as meaningful. For example, it may be desired to search
only for structures X= {(Vi, .., V,,} that are partitions, i. e., such that 7 # j
implies V; N V;=. A very simple heuristic for such structures (illustrating,
incidently, a global aggregation procedure) is given below:

ArGoriTHM 4.1 (Let|V|=n)
Ji=n,
X:={{v}]veV};
while /> 1 and the stopping criterion is not met do
begin
fori: =1tojx(j—1)/2 do
begin
construct W, by merging two as yet unmerged elements V;, V;eX;
record d(f, 1 (ty, (/):
end;
identify W*e{W,} with minimum information loss;

X =W*,
ji=j—1
end; I

A possible sequence (X,, . .., X,) for five variables:

7’"1}5{”2 ,'7}3},{D4}, {US}}
1
IR
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The procedures of Conant (1988) and Cavallo and Klir (1979) have under
gone extensive experimental testing, primarily by simulation studies in which
they are applied to behavior functions with known reconstruction properties
The testing reported in (Hai and Klir, 1985; Klir and Parviz, 1986) i
particularly noteworthy because it provides evidence for the validity of :
reconstruction principle of inductive reasoning applicable to the estimation o
arbitrary (i.e., reconstructable or otherwise) probability distribution
functions. What was discovered is that when a probability distribution p i
estimated as a relative frequency distribution p from data generated by mean
of it (a total of N tuples redom (V) generated randomly with expected
frequency -of generation of tuple ¢ equal to p(f)x N), the distribution p*
reconstructed from projections of p onto the best structure at low levels o
refinement tends to be closer to p than is p itself:

Further development of techniques for reconstructability analysis.of inter-
val-valued behavior functions is necessary, as is work on se}manﬂcs (dat‘a
dependencies) for interpreting the structure of a reconstruct@n hyp?thes1s
for such a system. Similarly, extension to fuzzy mea‘sures (Klir and Pf)lge.r,
1988) other than possibilistic, crisp possibilistic (relatlgnal), and pl‘Ob‘dblllS'[l.C
measures remains an open problem. Also, the question of exactly what is
indicated by a reconstruction hypothesis from which a behavior function is
only approximately reconstructable is an issue that has yet to be investigated
either theoretically or empirically.

Although many of the existing heuristics have been shown experimentally
to work quite well, even for systems with up to 100 variables (Conant, 1988),
it is fair to say that there is still a great need for additional work on
algorithms. This becomes apparent when one considers that in some fields
(e. g economics or chemical engineering), a single system may be defined on
many hundreds, or even thousands, of variables. At the same time, techniques
in use by researchers in these fields tend to be based predominantly on
analysis of pairwise interactions between individual variables. Thus, some
studies have failed to detect higher-order constraints detectable by recon-
structability analysis (Cavallo, 1979). In order to provide a usable alternative,
i.e., in order more adequately to analyze such large-scale systems, it will be
necessary somehow to improve dramatically the efficiency of search proce-
dures for reconstructability analysis.

Ylp=p*0O|<Y|p@®)—-p©)].

[The Hamming distance is used to ensure applicability to all pairs (p, p) and
@, p*)]

This effect is most pronounced for reasonably small values of N, sinc
lim p=p. However, it is precisely when one has few observations that one’

N - w
confidence in the accuracy of the usual estimate p (r)=n (1)/N is weakest and
one might be willing to apply such a technique to the problem of estimating
a probability distribution function from frequency data. (See Klir, 19905
this issue, for further discussion.)
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S. Areas for future research

Since the publication of the previous overview articles (Cavallo and Klir
1981 a; Klir, 1984; Klir and Way, 1985; Klir, 1987), progress has been made
on a number of fronts. Procedures for generating without duplicates al
immediate refinements of a set of G-structures have been developed (Cavallo
and De Voy, 1989). The identification problem for probabilistic systems has
been studied in considerable detail (Pittarelli, 1989 ¢, 1990). More work has
been done on reconstructability analysis of systems with dynamic properties
(Klir, 19904, this issue). Although no further results have been published
on the topic of resolution of inconsistent structure systems, techniques for
reconstructability analysis for interval-valued probabilistic systems have
recently been devised (Pittarelli, 1989 4). Such systems are much less likely
to be inconsistent than are standard probabilistic systems.
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DYNAMIC ASPECTS IN RECONSTRUCTABILITY ANALYSIS: THE
ROLE OF MINIMUM UNCERTAINTY PRINCIPLES *

George J. KLIR
State University of New York *

Abstract . ‘ , .
The role of principles of minimum uncertainty in dealing with the

reconstruction problem of systems with dynamic properties is discus-
sed. The aim of the reconstruction problem, one of two problems
addressed by reconstructability analysis, is to determine the smallest
possible sub-systems by which a given overall system can be
adequately represented.

Résumé . . ‘
Nous traitons du rdle des principes de moindre incertitude en analy-

sant le probléme de reconstruction de systémes & caractére dynamique.
Le but du probléme de reconstruction, I'un des deux problémes
concernés par lanalyse de la reconstructibilité, est de déterminer les
sous-systémes minimaux capables de représenter de maniére adéquate
un systéme global donné.

 This little paper is dedicated to Wyllis Bandler. In my opinion, Wyllis is a
rather unusual mathematician in the sense that his research work has almost
always focused on important but underdeveloped areas of mathematics. One
area that has considerably been advanced by Wyllis’ research is the area of
mathmatical relations (Bandler and Kohout, 1980 a, b, 1986, 1987 a, b). It
was primarily this area of research, which was of interest to both of us, that
brought us together some 15 years ago. The aim of this paper is to illustrate

This paper was supported in part by the National Science Foundation under Grant IST 86-
4676; its original version was prepared for Wyllis Bandler’s Festschrift.
1. Binghamton, New York 13901 US.A., Department of Systems Science, Thomas J. Watson
chool of Engineering, Applied Science, and Technology.

. Rev. intern. systémique. 0980-1472 Vol. 4/90/01/ 33 /11/$ 3.10/® Afcet Gauthier-Villars




