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DATA SYNTHESIS FROM PROBABILISTIC STRUCTURE SYSTEMS

Michael PITTARELLI
State University of New York Institute of Technology *

Abstract

Methods of constructing data from the information in a probabilistic
structure system are presented. The resulting data may take various
forms: a single probability distribution, bounds on components of a
single distribution, a set of distributions, or another structure system.
Rudiments of an algebra for probability distributions over finite
structured spaces are developed by means of which the correctness
of several data synthesis procedures is demonstrated. The potential
usefulness of these procedures is illustrated through their application
to problems of decision making under uncertainty.

Résumé

Nous présentons des techniques pour construire des données 4 partir
d’un systéme de structures aléatoires. Les données qui en résultent
peuvent prendre des formes diverses : loi de probabilité unique, bor-
nes concernant les composantes d’une loi de probabilité unique,
ensemble de lois de probabilité, ou un autre systéme de structures.
Nous développons les rudiments d’une algébre pour les lois de proba-
bilité¢ définies sur des espaces a structure finie, ce qui nous permet de
démontrer la validité de quelques méthodes de synthéses de données,
Nous faisons valoir I'utilité possible de ces méthodes en les appliquant
a quelques problémes de choix de comportement rationnel face au
risque.

1. Introduction: structure systems

A probabilistic structure system is, essentially, a collection of probability
distributions over Cartesian products of finite variable domains. Formally, a
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46 M. PITTARELLI

structure system may be defined as a set S={P, ..., P, } of probabilistic
systems. A probabilistic system is a four-tuple P=(V, A, dom, p), where

e V is a non-empty set of variables (or attributes), and V is referred to as
the scheme for P,

e A is a non-empty set of finite sets of values called domains;

e dom: V— A is an onto function that associates a domain with each
variable;

e dom(A)= X dom (v), where A<V, is the set of system substates (subtu-
veA

ples) over variables A [dom (V) is the set of system states, or system tuples];

o for wedom (W), bedom(B), and B&€W, w[B]=5 iff b and w agree on
all attributes in B;

o p:dom (V)— {0, 1], where Z p(H)=1 is a probability distribution
t e dom (V)
over V. [For convenience, a total ordering on dom (V) is assumed, and p is
used to denote the correspondingly ordered tuple of images of the function
p. Also, since p determines V, A, and dom, “p” is sometimes used to refer to
the system P.]

Example 1.1. — The tables below represent a structure system S={P,,
P,, Py} for which V,={A, B}, A,={{q,, a,}, {b,, b, }}, dom (A)={q,,
ay }, dom(B)={by, b,}, V,={B, C}, etc.

A B Py (L) B C p2() D 05(.)
ay by 0 by [ 0.1 d, 0.25
a, b, 0.2 b, ¢, 0.3 d, 0.25
a, by 0.4 b, ¢y 0.2 dy 0.5
a, b, 04 b, [ 0.4

A structure system { Py, ..., P, } has the structure X={V,, ..., V,}, where
V; is the scheme for P, For the example above, the structure is {{ A, B},
{B,CJ, {D}}.

A probabilistic structure system may be viewed as a probabilistic database.
Mathematically, all that distinguishes a probabilistic structure system from a
relational database instance is the nature of the functions p;. If they were to
be replaced by characteristic functions r; : dom (V) — {0, 1}, the result would
be a relational database. (In the reconstructability analysis literature, what is
referred to as a “‘set-theoretic” structure system is identical to a relational
database instance. The term “structure system” will be used in the remainder
of the paper to refer to probabilistic structure systems.) A previous paper
(Cavallo and Pittarelli, 1987) discusses probabilistic analogues of relational
data dependencies and information-preserving transformations of relational
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to probabilistic database instances. (The paper also mentions the priority of
work in the areas of dependency theory, decomposition theory for relations,
etc., performed by systems theorists, most notably W. R. Ashby. In the

computer science literature, the origins of such investigations are erroneously
attributed to E. F. Codd.)

The purpose of this paper is to describe methods of synthesizing data from
the information contained in a probabilistic structure system. The resulting
data may take various forms: a single probability distribution, a set of
probability distributions, an “interval-valued” distribution, or another struc-
ture system. The process of synthesizing data in this sense is similar to the
construction of “views” for relational databases. Just as procedures for view
construction require for their precise definition (as well as for optimization)
an algebra (relational algebra) for manipulating relational data, so too is an
algebra for probabilistic data necessary.

2. Probabilistic algebra

The basic operations required for the procedures to be discussed are
defined in this section. (None of them is new. They are redefined here
for completeness.) Algebriac facts relating the various operations are then
presented, mostly without proof, as a series of propositions. These will be used
in demonstrations of the correctness of various data synthesis procedures.

DerNiTION 2.1. — The projection of a distribution p with scheme V onto
A<V is the distribution =, (p), where
s (p) : dom(A) - [0,1]

and

@) @= Y pl). O

s[Al=a

The projection of a distribution onto a subset of its scheme is unique. (In
'the probability and statistics literature, the term “marginalization” is used
instead of ““projection”.)

Example 2.1. — Projecting distribution p, of the structure system in
Example 1.1 onto the singleton set {C} of variables yields the distribution

C Ty (02 ()
¢y 0.3
¢y 0.7
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A model of a set of variables V is a structure

X={V,, ..., V,} such that U V;,SV and V,¢V, forall i, je {1, ..., m}.

j=1

DEFINITION 2.2, —

(X needn’t be a cover of V.)

Projecting p with scheme V onto a model X={V, ..
in the structure system

.. V,,} of V results

nx@)z{nvl(P)' cees nv,,,([’)}- U

Example 2.2. — The subset S'={P,, Py} of the structure system
S={P,, P,, P, } in Example 1.1 is the projection onto the structure {{ A, B},
{D}} of the distribution p below:

A B D p()
ay b, d, 0
a, by dy 0
a, b, dy 0
ay b, d, 0.05
a, b, d, 0.05
a b, dy 0.1
a, b, d, 0.1
ay by d, 0.1
ay b, dy 0.2
a b, dy 0.1
a b, d, 0.1
a, b, dy 0.2

The refinement relation (Cavallo and Klir, 1979) between structures is
important not only for data analysis (e.g., reconstructability analysis) but
also for data synthesis.

Drrmurion 2.3. — A structure X is a refinement of structure Y, denoted
X <Y, iff for each V e X there exists a V e Y such that V,£V,. For example,
{{A}, {B, C}} is a refinement of {{A, B}, {B,C}, {D}}. O

A structure system S with structure Y may be projected onto a refinement
X of Y to form a structure system 7y (S) each element of which is a projection
of some element of S.

Example 2.3. — The projection of S={P,, P,, P, } of Example 1.1 onto
the structure {{ A}, {B, C}]} results in the structure system my ., (5 cy )
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with elements

A Ty () () B C P2()

ay 0.2 b, ¢ 0.1

a, 0.8 by ¢y 0.3
b, ¢ 0.2
b, Y 0.4

Note that the second element of the structure system above has as its
distribution the original distribution p, of the operand structure system. This
is a consequence of

ProrositioN 1. — wy (p)=p, if V is the scheme for p. O

As noted previously, a structure system S may be constructed by projection
of a known probability distribution p with scheme V onto a model X of V.
If such a structure system is itself projected onto a refinement Y of X, the
resulting system my (S) is identical to the system my(p) that would have
resulted from projecting p directly onto Y.

Tueorem 1. — Y <X implies Tty (g (p)) =Ty ().
Proof. — Follows directly from:

ProrosiTiON 2. — A B implies ny (ng (p)) =7, (p). O

The operator symbol “n” is overloaded in the sense that it represents
operators of different types, where the operator type depends on the types
of the two operands in expressions 7, (0,) For example, when o, is a structure
and o, is a distribution, the domain of = is the Cartesian product of a set of
structures with a set of distributions, and the codomain is a set of structure
systems. It will frequently be convient, as suggested by the notation, to view
T,, as the name of a unary function of o, in expressions 7, (0,). Thus,
T, (A,), where A, is a ser of distributions or structure systems, denotes the
image of A, under the mapping 7,, (Bourbaki, 1954):

oy (A= { Moy (03) I 0,€A, }

In what follows there will be occasional use of projection expressions of this
last type.

For a given system S with structure X={V,, ..., V, } there is, in general,
an infinite set of distributions p over any scheme V for which X is a model
such that ny (p)=S. Thus, mappings my are usually not invertible. This is the
crux of the identification problem of reconstructability analysis: given a struc-
ture system S, characterize in some way the set of distributions p whose
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projection onto the structure of S yields S (where a particular scheme V for
p, usually the union of the elements of the structure of S, is assumed).

DeriNiTiON 2.4. — For a system S={p,, ., Pw} whose structure
X= {Vl, ..., V,} is a model of V, the extension of S over V is the set

Ey(S)={peP"|ny,(p)=p, i=1, ..., m},

where n=|dom (V)| and P" is the simplex of all n-component probability
distributions on dom (V). If V=V, U ...UYV,, then E, (S) may be written
E (S), and coincides with the standard reconstruction family of S. [J

Example 2.4. — The extension of the structure system { p,, p, } below

A p:(.) C P2()
a, 0.2 ¢y 0.3
ay 0.8 ¢y 0.7

over the scheme { A, C} is the set E({p;, p, }) of solutions p to the system
of equations and inequalities
plaje)+plaicy)=90.2
playe)+playc)=08
plaje)+pla,e)=03
playc)tplae)=0.7
p(.)20.
(Note that the equations imply that p(a, ¢,)+ ... +p(a,c,)=1.)
Extension is complementary to projection in the weak sense that:

ProposITION 3. — 7ty (p) € Ey (14 (p)).
When V is the scheme for p this reduces, by Proposition 1, to

peE(mx (). O

DErFINITION 2.5. — p over V is identifiable from X iff Ey (ng (p))={p}. O
Some additional algebraic facts relating the operations of projection and
extension follow.

ProrosiTion 4. — Ey (4, (p)=P". U
ProrosiTion 5. — Ey (ny, (o) ={ny(»)}. O
PROPOSITION 6. — Ey (1% (p)) is a proper subset of P", for any X #{ & }. U
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ProposiTioNn 7. — VEQ implies my (Eq(S))=E(S), where my(Eq(S))
denotes the range of the function my applied to the elements of Ey(S), and S’s
structure is a cover of V. [

ProrosiTion 8. — ny (Ey(S))=E(S). O

ProposiTION 9. — iy (E(nx @) ={nx () }. O

Prorosition 10. — XY implies Ey (ny (9)) S Ey (g ().

Proposition 10 is casily proved (Cavallo and Pittarelli, 1987) by noting
that any m, (p), where Z is a scheme, represents a set of linear equations and
inequalities. Ey, (1ty (p)) represents the set of all solutions to the linear system
determined by the projection of p onto elements of the structure X. If X <Y,
then each equation determined by the projection of p onto elements of X is
a linear combination of equations in the system determined by the projection
of p onto elements of Y; thus, all solutions to the latter system are also
solutions to the first; i.e., Ey (ny (p)) SEy (nx (). O

The maximum and minimum values, as p ranges over Ey (S), of p(¢) for a
given tedom (V) can be determined by linear programming. These values are
the endpoints of probability intervals consisting of all possible values for p (1),
given S. For the structure system {py, p,} of Example 2.4, these intervals,
i(t), are

A C i)
ay ¢y [0,0.2]
a, ¢y {0,0.2]
s ¢ [0.1,0.2}
a, ¢y [0.5,0.7]

The vector of intervals i may be viewed as an ““interval-valued” probability
distribution. For an individual tuple ¢ considered in isolation from all other
' edom (V), the interval i(¢) contains all the information regarding its proba-
bility that can be deduced from S. Real-valued (i.e., ordinary) distributions
p can be inductively inferred from S but, unless this p is identifiable from its
projections onto the scheme for S, i.e., E(S)={p}, the actual joint distribu-
tion over the variables V may not be the distribution p inferred. As will be
illustrated, and as is discussed more fully elsewhere (Seidenfeld, 1983; Pitta-
relli, 1988, 1989), interval valued distributions and the sets of real-valued
distributions Ey (S) can be put to many of the same uses as single real-valued
distributions. Thus, it is not always necessary to estimate a single peEy (S).
The narrower the components of an interval-valued distribution or the smaller
a set of distributions Ey (S), the closer the results of procedures (e. g., decision
procedures) devised for use with them will be to those of procedures suitable
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for single real-valued distributions. The goal of many of the data synthesis
techniques to be discussed is the minimization of these widths and sizes.

A join operation has as domain a set of structure systems and as codomain
a set of probability distributions. (The term derives from relational database
theory, where a join operation applied to a relational database instance yields
a “universal” relation instance compatible with it.)

The result of applying a join operator J to a structure system S is a
distribution such that its projection onto the structure of S yields S. Formally,
where X is the structure of S,

T (J(S))=S.
Equivalently, for any p and any cover X of its scheme,
Ty (J (x (P)) = 7ty (p)-
In other words,
J (nx () € E (nx (p)).

The composite function J = my, the project-join operation, maps distributions
to distributions.

DermniTION 2.6. — A distribution is reconstructable, relative to a project-
join operator Jemy, iff it is a fixed point of Jony, i.e., iff
J(nx(p))=p. O

(Observe that identifiability of p from X implies reconstructability from X,
for any join operator J, but that reconstructability does not imply identifiabil-
ity.) For the join operations to be discussed, there is a unique element p of
any equivalence class (with respect to projection onto X) E (ny (p)) such that
p=1J(ny (p)). Thus, the property of (perfect vs. approximate) reconstructabil-
ity is extremely rare.

A widely used measure of the uncertainty represented by a finite probability |

distribution is (Shannon) entropy,

H(p)=—Yp (1) log, p(1).

For any reconstruction family E(S), there is a unique maximum entropy
element (Cavallo and Klir, 1981; Jaynes, 1984). The canonical probabilistic
Jjoin procedure of reconstructability analysis yields the (unique) maximum
entropy element, p*, of a reconstruction family (Cavallo and Klir, 1981):
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J(E(S))=p*. The maximum entropy principle of inductive inference prescribes
estimation of p(z) as p*(¢) when one has information regarding redom (V)
in the form of a structure system S over a cover of V. (This principle is
discussed critically in [Pittarelli, 1989].)

Alternatives to the maximum entropy join have been considered (Pittarelli,
1989): the centroid of E(S), or a minimax distance join, J (E(S))=p,,, where

max d(p,, p')= min
P EE®)

max d(p,p’),

peES) peE(®S)

for a suitable distance measure d. However, only the maximum entropy join
has been employed in practice. Thus, in what follows, the term “join” will
refer to the maximum entropy join operation.

3. Data synthesis

Suppose that a distribution p with scheme V is reconstructable from
some structure X={V,, ..., V, }: p=J(ny(p)). Further, suppose that the
structure system S=rmy (p) is stored, and not p itself. When X is sufficiently
refined, the storage and transmission cost savings achieved thereby can be
dramatic. For example, if [V|=n and |dom (v)|=k for all veV, explicit
storage of p involves k" numbers. Storage of my (p), for X={{v}|veV]},
requires only kn numbers. [This was one of the motivations behind early
work in this area (Lewis, 1959).]

Assume now that the projection of p onto the structure Y = {V,-, sV }
is desired, where V, . . UV,eV,U. ..UV, One obvious strategy, since
p is reconstructable from S, would be to compute p as J(S) and project it
onto Y to obtain my (p)-

Ty (p) =1y (J (5)).

This may be much more expensive than is necessary. To give an extreme
example, let X={{v,, v;, 03}, {v;, v3, v}, {vy, v, v4}} and Y={{v,
v, }, {vs, v4 }}. From Proposition 2, Ty (p) is relatively quickly obtained by
projection from two of the elements of S:

Ty D) =T, 021, 103, v (P))

= Mor o) o, 02,050 P g, o) (T, 0, 00y () }-

Computing 7y (p) as Tty (J(S)) requires an expensive iterative join procedure
(Cavallo and Klir, 1981). This illustrates the general principle that whenever
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Y <X, ny (p) is most efficiently computed as
Ty (p): { TEV,‘(TcAi(p)), R T[Vj(nAj(p)) }5

where Y={V, ..., V,}, Vi2A, ..., VigA,and A, ..., AjeX

Consider now a situation in which p=1J(ny (p)), 1y (p) is given, and ny (p)
is desired, where V, &V, the scheme for p. If V,cAeX, then
Ty, (P) = Ty, (T4 (), from Proposition 2. Otherwise, there are two approaches
possible.

One could compute my, (p) as my, (J (nx (p))), as explained above, but this
may be unnecessarily expensive.

For loopless (a-acyclic) structures (Pittarelli, 1990; Section 3) it may be
possible to join over a much smaller structure and then, if necessary, project
the resulting distribution onto the set V. Any structure X={V,, ..., V.1
(loopless or not) may be partitioned into a set of connected components
Xc={E,, ..., E,} such that
) UVN U V=gforallije{l, ...,k

VeE; VekE;
(2) For any ie{l, ..., k} V, V,€E, implies that there is a sequence
iy» - +» ¥, such that
(@) V, eE,qe{l, ..., n},
&) V,NV,, #D, qef{l, ...,n—1},
() V;{,=V,V, =V,
Let X, denote the subset of members of X contained in some connected
component involving elements of V:

\Y

Xy,=1{ U [forsome V,eC, VN Vo= }.
CeXc
For a loopless structure X={V,, ..., V, }, let (X, Vo)=(V,,, ..., V)
denote the reverse of the sequence in which elements V;eXy, are eliminated
by the algorithm (see Algorithm 3.1 in Pittarelli, 1990; this issue):
k: =m;
XX, V) : =g,
W =Xy,
repeat in any order until W= { 5 }
(1) if v appears in only one V,,eWthenV, : =V, — {v}
(2) if Vi, gV, where i},
then begin
W =Ww-{Vv._ 1§
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(X, Vol : :Viw;

ki=k-1
end. ’

Let o (X, V,) denote the shortest subsequence of £ (X, V,) such that no
element of (X, V,)— o (X, V,) includes an element of V,. A (pairwise) join
expression (see Pittarelli, 1990; this issue) is constructed from
o(X,Vy)=(V . VU],) as

o>
1)1 (Vcl) sz (Vuzkvcl |V0'1 m ch)
XX Py Vo, = Vo, = =V, |V0nm(VGI1~l V.. UV,

where, €. g., p; (V,;,) abbreviates Ty, (p). The resulting probability distribution
is

n\/u‘ u.A.uV[,j (p) =] (Ttry(xv Vo) (p))‘

By Proposition 1, projection of this distribution onto the set V, yields
Ty, (P), which coincides with nty (J (nx (p))). Therefore,

THEOREM 2. — Ty, (J (x (P))) =y, (J (7 x, v @)). O

Since o (X, Vo)X and the refinement algorithm and projection are less
expensive than the join operation, this provides a more efficient method of
computing 7y, (p) than as ny (I (nx (p))).

Example 3.1. — p=J(my (p)), where X={{v,, v, }, {v3, v4 }, {vs, v5 }» { V2,
71} Let Vo={2,, v; }. The structure system my (p) is

vy ] “(ul,uz)(P)(J Vs Uy n(v_;,u,;)(p)(')
0 0 0.2 0 0 0

0 1 0.3 0 1 0.5

1 0 0.4 1 0 0.25

1 1 0.1 1 1 0.25

Vs Vs T u5.u6}(1’) @ Uy ] n(vz,1)7}(p)(‘)
0 0 0.3 0 0 0.1

0 1 0.3 0 1 0.4

1 0 0.3 I 0 0.4

1 1 0.1 1 1 0.1

For this example,

Xcz{{{vu 3 15 {02, 07 1) ({03 va b {{vss v6 1))
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and
XV(J:{{UD L) } {02, 05 }}

Independent of elimination order, o (X, V,)=Xy, in this case. Thus,

Mot o9y D) =0, 001 T Ty, gy ) 7y, (D)

vs}

Moy, et (P ()

0.292
0.208
0.208
0.292

—_— O
—_—0 e

Notice that this distribution does not equal the join of the projections onto
the individual variables v, and v,:

U1 Uq J({“(u,)(}’)’ 7":57)(]))})(-)
0 0 0.25
0 1 0.25
1 0 0.25
1 1 0.25

In particular, notice that its entropy is lower. Information, quantified as
negative entropy, is lost by first projecting and then joining. This relation
holds in general, regardless of the reconstructability of p from its projections
onto X. Let Y be any refinement of X that is a cover of V,,.

Tueorem 3. — H (my, (J (nx (P))) SH (J (ny (nx ()
Proof. — Since Y =X, it follows from Proposition 10 that

Ey (mx (0) € Ey (ny (0)).
Therefore,

Ty, (Ey (x (P)) €7y, (Ey (y ().
By Proposition 7,

Ty, (Ey (ny @)= EVO (my @) =E (ny (p)).
J (g (p)) € Ey (nx (p)).

Therefore,

Ty, (3 (g (p))) € Ty, (By (y ().
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Since my, (By (ny () 2 E (ny (p)), it follows that
Ty, (mx () € E (my (p))-

By Theorem [, E(ny (p))=E (ny (nx (p))). By definition, J(rny (4 (p))) is the
maximum entropy element of E (ny (my (p))). So,

H(my, U (tx (M) =HU (ny (g (). O

Example 3.1 illustrates the special case of Theorem 3 in which p=1J (ny (p))
and Y={{v}[veV,}. A more important special case is Vo=V and X={V
for an arbitrary distribution p :

H(my (J (ﬂ:{ vy @EIN=HJ (ny (Tt{ v} 2)))
becomes, by Proposition 1 and Theorem 1,
H{p)=HJ (ry (0))).

This is a statement of the standard reconstruction problem of reconstructabil-
ity analysis, in which a known p is projected onto a structure Y and the
difference H(J (ny (p))) —H (p), which in general is nonzero, measures the
degree to which p is reconstructable from its projections onto Y (Cavallo
and Klir, 1981; Higashi, 1984).

Although all members of a reconstruction family E (rx (p)) are by definition
equivalent with respect to projections onto X={V,, ..., V, ! and thus onto
clements of X, they are not necessarily equivalent with respect to projections
onto arbitrary sets Vo<V, ,U...UV,. When this equivalence does hold,
however, what is manifested is a generalization of the standard notion of the
identifiability of a distribution p from its projection onto a structure X to
the identifiability of my  (p) from the projection of p onto X:

Ty (By (mx () = { 7y, () .

When V, =V, the scheme for p, this reduces, by Proposition 8, to the ordinary
identifiability concept:

E(ny @) =1{p}.
[A similar generalization of reconstructability,
Ty, @) =T(ry (nvo (12)R

where Y is a model of V,, has as an analogue in relational database theory
the notion of an embedded join dependency (Fagin and Vardi, 1986).] Because
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projections my (p) are not in general identifiable from the projection of p
onto an arbitrary structure, if one has as data a structure system S, which
may be viewed as ny (p) for some unknown p, and information is required in
the form of a distribution over some set V,, it will not do to form Ty, (4 (S)).
For the unknown actual distribution p (which needn’t be reconstructable
from X), it may be that ny (p) is very different from ny (J(S)). To illustrate,
for the structure system

G H n() H I 72(0)
0 0 0.20 0 0 0.15
0 1 0.35 0 1 0.35
1 0 0.30 1 0 0.25
1 I 0.15 1 1 0.25

min  p(GI=11)=0.15, max
peE({p1.p2}) peE(p1, P2}
tion onto the set V, of variables of actual interest is not identifiable from a
structure system (which can be determined via linear programming), it seems
advisable to work with the set of distributions ny  (E(S)), which is guaranteed
to contain my (p). Methods for utilizing such sets are discussed next.

p(GI=11)=0.45. When the projec-

A structure system may represent data from studies undertaken on multiple
sets of variables, independently or in some coordinated manner. To illustrate
the latter, consider a surveillance problem in which one wishes to determine
the relative frequencies with which a moving object occupies the cells of a 3-
dimensional grid over some period of time, but one is able to observe motion
in only two of the planes (since, e. g., sensors mounted in such a way as to
detect movement in the third plane directly might be damaged, or might be
detected by the object, causing it to change its normal pattern of movement,
etc.). Bisecting each dimension (X, Y, Z) into lower (“L”) and upper (*U”)
halves, observed relative frequencies of occupation of 2-dimensional cells
might be represented as the structure system S={m y v,(p), Tx, 2, }
below, where p over scheme {X, Y, Z} is the actual but unknown relative
frequency distribution over the 3-dimensional space:

X Y Tx, vy @) () X Z Tx, 21 (.)
L L 0.1 L L 0.15
L U 0.1 L 19) 0.05
U L 0.4 U L 0.3
U U 0.4 0] U 0.5
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There is no reason to believe in this case that p=1J(S) or, for that matter,
any other one in particular of the infinitely many elements of E(S). Tradi-
tionally, for purposes, say, of decision analysis, it has been the practice to
estimate p as J(S) and then apply standard Bayesian techniques. As argued
elsewhere (Pittarelli, 1989), not only is this unnecessary, but it can produce
misleading results.

Example 3.2. — To illustrate, consider a decision problem utilizing the
information in S, above. It is necessary to guess which cell the object is
currently occupying, with decision matrix

Sxyz=rLLL St Scun Stou Sue Suu Suul Suou

Qupp v e 100 0 0 0 0 0 0 - 50
gy e« on v 0 010 0 0 0 0 -10 0
gy v v e e 0 0 10 0 0 =5 0 0
Ayy-- - - 0 0 0 10 =5 0 0 0
LTS T 0 0 0 =5 10 0 0 0
Agpy -« o - - - 0 0 -5 0 0 10 0 0
AguL -« « - v - 0 -10 0 0 0 0 10 0
AGuy - -+ - v - =30 0 0 0 0 0 0 100

where g, and s, denote, respectively, the act of guessing that, and the state in
which, the object is occupying cell ¢, and the entry in row a, column s, is
the utility u(a,, s,) of act ¢, when the object is in cell 7.

If one knew that p=p*=J(S), one would compute p* and select an act a*
maximizing expected utility:

2ula*, s)p*(s)=max Y u(a, s)p*(s).

For the example, the act ayyy uniquely maximizes expected utility under the
estimate p* : Y u(ayyy, 8) p* (5,)=22.75. For the data S, however, it is pos-
t

sible to determine that this act maximizes expected utility relative to any
p€E(S). Using linear programming, expected utility intervals U(a) can be
calculated (Seidenfeld, 1983; Pittarelli, 1988, 1989) for each act. Relative to
a given distribution p, let e(¢)=) u(a, 5)p(s,). Then, relative to a structure

t

system S,

U(a)=[ min ¢(a), max e(a)].
peE(S) peE(S)
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For this decision problem, the utility intervals are:

Ulay)=[—15, 5]
U(apy)=[-3,0.5]
U () =~ 1.5, 0.5]
U (a ) =[—1.5, 0.5]
U (aye) =[-0.25, 3]
U (ay ) =[—0.5, 3.75]
U(ayy)=[—0.5, 0.3]
U (ayyy) =17, 38.5].

Act ayyy dominates each of the others in the sense that min U (ayyy)
>max U (a), for all other acts a. There will not always be a unique dominating
action. There exist techniques applicable in such cases, but they are somewhat
controversial; e. g., maximizing the minimum expected utility (Pittarelli, 1988,
1989). The smaller the set E(S) in a decision problem with probability data
in the form of a structure system, the narrower the utility intervals U () and
hence the greater the likelihood that a unique dominating act will be identi-
fied. This motivates the discussion of the data synthesis optimization proce-
dures to be presented next, which take as input structure systems and produce
as output sets of probability distributions.

Given a structure system S with structure X={Vy, ..., V, }, suppose that
only variables Vo, V=V, U. ..UV, are of interest for some purpose (e. g.,
a decision problem). With p the actual but unknown distribution such that
S=my (p), the probability distribution p,=mny (p) is desired. Unlike the type
of problem discussed previously, in which p is recontructable from its projec-
tions onto X, it will not necessarily be the case that ny, (p)=my, (J(S)). Thus
it will not in general be possible to construct p, itself from S. Instead, a set
(convex polyhedron) of distributions containing p, is determined. This set
can be used in decision making (as illustrated above), or bounds on com-
ponents p, () can be calculated from it using linear programming, etc.

There are trivial cases in which p,=ny, (p) is determinable. If V,eX, then
Po is immediately given as an element of S. If Vo<V, eX, then, from
Proposition 2, po= Ty, (Ty, (1)).

Otherwise, constraints determining a set containing p, must be pieced
together from different elements of S. There are two basic approaches. In
the first, S is extended and the resulting set of distributions is projected onto
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V. Since, by Proposition 3, pe E (ny (p)), it follows that
Po €Ty, (E(nx ().

Alternatively, projection may occur before extension. The extreme case would
entail forming individual distributions =, (p) for each ve V, and taking their
extension. Let Xo={{v}|veV,}. Then, by reasoning similar to that in the
proof of Theorem 3, Po€ By, (nx, (0)) = E (4, (S)). Less extreme would be to
form the structure system ny. (p), where X'={V, N V,;|V,eX, V, NV, # 1
and extend it. It is straightforward to show that p,eE (ny (p)) also. At
slightly greater expense (more linear equations, but the same number of
variables, to characterize the set of distributions), this method gives more
information  regarding  p,: from  Proposition 10, since X <X,
E (- (0)) £ E (1, (p))-

Although they are more efficient, neither of the “project first” techniques
yields constraints on p, as strong as those determinable by extending S and
then projecting onto V.

= Ty, (E(nx (0)) S E (mx. (nx ())) = E (nx. (p)).

Proof. — Since X'<X, it follows from Proposition 10 that

THEOREM 4.

Ey (nx () € Ey (nx- (0)),
which implies that
Ty, (By (mx (P)) E 7y, (Ey (mx (),
which, by Proposition 7, implies
Ty, (Ev (mx (P)) S By, (mx (1)),
i.e., that
Ty (BE(mx @) S E (ny (p)). O

[Therefore, iy, (E(nx () S E (mx, () also.]

X, and X are, respectively, the most and least refined structures over which
projections of p are available that cover some V2V,. For any such covering
structure W, X,<W. If also W<X, then Proposition 10 guarantees that
Po€Ty, (E(my (p)). The smallest of these sets guaranteed to contain p, is
Ty, (E(nx (). Note, however, that less refined structures W do not necess-
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arily determine strictly smaller sets Ty, (E(mty (). For p defined as

E F G ()

0 0 0.0
0 0 1 0.0
0 I 0 0.2
0 1 1 0.2
1 0 0 0.0
[ 0 1 0.0
1 l 0 0.4
1 1 1 0.2

and with Vo={E, G}, Po=Tg, gy (p) is identifiable from the most refined
covering model, X,={{E}, {G}}. Therefore, nothing is to be gained by
considering less refined models:

Ty, (E (T () ={ Ty, (P) j, forany X,<W.

Example 3.3. — As an application of the “extend, then project” principle
of Theorem 4, consider a decision problem utilizing the data of Example
3.1, with decision matrix

Spy v7=00 So1 Sio S11
goei oo, 50 0 -5 1,000
Ayooo 0 10 20 0
Aye oo i 400 0 0 10

The set of variables of actual interest is Vo={v,, v, }. Data are available
in the form of a structure system 7y (p), where X={{v, v,}, {vs, v; }, {vs,
g}, {03, vy}}, and p is unknown and unidentifiable. The least expensive
solution based on extension and not estimation of Ty, () utilizes projections
onto Xo={{v, }, {v, }}:

vy Tc(u,)(]’)(-) \Z W{S7}(17)(-)
0 0.5 0 0.5
1 0.5 I 0.5

Utility intervals calculated from this structure system are indecisive:
U(ay)=[—2.5, 525]
U(ay)=[0, 15]
U (a;)=[0, 205].

Extending the entire structure system and then projecting onto V, yields the
utility intervals
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U (a,)=1[208, 525]
U(a,)=10, 9]
U (a;)=[82, 205,

from which it can be determined that a, is uniquely optimal with respect to
expected utility maximization: for any p’eny (p), act a, uniquely maximizes
expected utility relative to Ty, (P").

The wider (and indecisive) “project first” utility intervals are less expensive
to calculate, requiring a linear program involving only 4 unknowns per
endpoint, vs. 128 unknowns for the “extend first” method. The theorem
below provides a method (“refine, then extend, then project™) for determining
the narrow “extend first” intervals much more efficiently (8 unknowns).

THeOREM 5 (Pittarelli, 1988). — Ty, (E (nx (p))) =y, (E (ny, (), where W
is the structure resulting from application of the algorithm:

(1) WX

(2) Repeat in any order until neither has any effect on the current value
of W:

(@) if a variable v¢ V,, appears in only one element of W, remove v from
that element,

(b) if W contains elements V, and V; such that V,cV, then
W« W-— { V; } ]

(Observe that W does not in general coincide with o (X, V,).)

Since W <X, characterization of Ty, (E (nw () requires fewer linear equa-
tions in fewer unknowns. For the X and V,, of Example 3.3, W={{v,, v, I3
{02, v, }}. Thus, the utility intervals calculated by extending my (p) and then
projecting onto V, can be calculated by first refining X to W (by means of
the polynomial-time algorithm of Theorem 5) before extending and then
projecting onto Vy; i.e., they can be determined from the structure system

Uy V2 My, e @) () Va vy T o3 ) (L)

0 0 0.2 0 0 0.2
0 1 0.3 0 1 0.4
1 0 0.4 1 0 0.3
1 1 0.1 1 1 0.1

4. Conclusion and suggestions for future research

Structure systems are treated as probabilistic databases from which infor-
mation in various forms may be extracted. The algebra of standard recon-
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structability analysis is extended slightly, and a few theorems relevant to
procedures for data synthesis are presented.

Although these procedures are illustrated through application to problems
of decision analysis, their scope is much wider. It would therefore be worth-
while not only for its mathematical interest, but also for pragmatic reasons,
to extend further the rudimentary algebra of probabilistic structure systems
sketched in this paper.
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RECONSTRUCTION PRINCIPLE OF INDUCTIVE REASONING
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Abstract

A new principle of inductive reasoning, which is based upon recon-
structability analysis, is discussed. The principle differs from the
straight rule, which is usually associated with inductive reasoning.
Experimental studies are described by which the principle is confirmed
and its domain of applicability partially delimited. The connection
of the principle to the notion of pragmatic information is also men-
tioned.

It is assumed that the reader is familiar with the reconstruction
problem of reconstructability analysis, which is overviewed in this
issue by Pittarelli (1990).

Résumé

Nous présentons un nouveau principe de raisonnement inductif fondé
sur I’analyse de la reconstructibilité. Ce principe se distingue de la
régle simple, assimilée d’habitude au raisonnement inductif. Nous
traitons d’études expérimentales qui confirment notre principe et qui
délimitent en partic son domaine d’application. Nous signalons le
rapport entre notre principe et la notion d’information pragmatique.
Nous supposons que le lecteur connait le probléme de reconstruction
tel qu’il se présente dans I'analyse de la reconstructibilité, résumée
dans ce numéro par Pittarelli (1990).

1. Introduction

During my study of the reconstruction problem (Klir, 1976, 1984, 1986),
one of the two problems addressed by reconstructability analysis, I made a
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