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64 M. PITTARELLI

structability analysis is extended slightly, and a few theorems relevant to
procedures for data synthesis are presented.

Although these procedures are illustrated through application to problems
of decision analysis, their scope is much wider. It would therefore be worth-
while not only for its mathematical interest, but also for pragmatic reasons,
to extend further the rudimentary algebra of probabilistic structure systems
sketched in this paper.
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RECONSTRUCTION PRINCIPLE OF INDUCTIVE REASONING

George J. KLIR
State University of New York !

Abstract

A new principle of inductive reasoning, which is based upon recon-
structability analysis, is discussed. The principle differs from the
straight rule, which is usually associated with inductive reasoning.
Experimental studies are described by which the principle is confirmed
and its domain of applicability partially delimited. The connection
of the principle to the notion of pragmatic information is also men-:
tioned.

It is assumed that the reader is familiar with the reconstruction
problem of reconstructability analysis, which is overviewed in this
issue by Pittarelli (1990).

Résumé

Nous présentons un nouveau principe de raisonnement inductif fondé
sur I'analyse de la reconstructibilité. Ce principe se distingue de la
régle simple, assimilée d’habitude au raisonnement inductif. Nous
traitons d’études expérimentales qui confirment notre principe et qui
délimitent en partie son domaine d’application. Nous signalons le
rapport entre notre principe et la notion d’information pragmatique.
Nous supposons que le lecteur connait le probléme de reconstruction
tel qu’il se présente dans I'analyse de la reconstructibilité, résumée
dans ce numéro par Pittarelli (1990).

1. Introduction

During my study of the reconstruction problem (Klir, 1976, 1984, 1986),
one of the two problems addressed by reconstructability analysis, I made a
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surprising discovery. The discovery, which was totally accidental, occurred
when I was inspecting the results of a group of simulation experiments whose
purpose was to determine performance characteristics of a method for dealing
with the reconstruction problem for probabilistic systems (Klir and Uytten-
hove, 1977).

In each experiment, an overall system was inferred from a segment of data
generated by a computer-simulated probabilistic system. This overall system
was then analyzed by the reconstruction method. At each level of the refine-
ment lattice, the method determined those reconstruction hypotheses that
conformed best to the data. The conformation was imperfect in virtually all
the experiments in the inspected group. In many experimerits, the best con-
forming reconstruction hypotheses produced overall states (different in dif-
ferent experiments) that were not contained in the data.

When analyzing the nature of these additional states, I found, to my
surprise, that almost all these states conformed to the systems by which the
data were generated. That is, almost all additional states produced by the
various superior reconstruction hypotheses (conforming best to data) were
correct states of the system that generated the data, but they did not have a
chance to enter into the rather small segments of data.

After I found similar results in other groups of simulation experiments, I
started to view this phenomenon as a potential principle of inductive reason-
ing rather than just as an accident: the use of a reconstruction method for
producing correct overall states that are not contained in the data. My initial

speculations about this principle, which I named a reconstruction principle of

inductive reasoning, began in the early 1980s (Klir, 1981). They were followed
by rather extensive experimental studies whose purpose was to validate the
principle and delimit its domain of applicability. Let me describe the nature
of these studies and overview their main results.

2. Experimental studies

Two major experimental studies were performed regarding the reconstruc-
tion problem: (i) an idealized study, in which it was assumed that the systems
employed for generating data were structure systems (i. e., systems constructed
in terms of subsystems); and (ii) a general study, in which no assumption
regarding the inner structure of the systems was applied. Both studies were
done for probabilistic systems; the general study was also performed for
possibilistic systems. The idealized study is described in a paper by Hai and
Klir (1985); the general study is described in a paper by Klir and Parviz
(1986).
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One purpose of these studies was to delimit conditions under which the
reconstruction principle of inductive reasoning is valid. That is, the studies
were intended to determine conditions under which the probabilities (or
possibilities) obtained from the superior reconstruction hypotheses are better
estimates of the actual probabilities (or possibilities) of the simulated system
than those obtained solely from the generated data.

In each simulation experiment (of either of the two studies), three overall
systems were compared: the simulated system, the system inferred from the
data pertaining to the experiment, and the system reconstructed from a
superior reconstruction hypothesis at some specific refinement level. Let
these systems be denoted by S (simulated), D (derived from data), and R
(reconstructed), respectively.

First, as part of the reconstruction problem, R was compared with D in
terms of an appropriate information distance (probabilistic or possibilistic)
and emerged among its competitors at the same level of refinement as a
reconstructed system closest to D (best conforming to D at that refinement
level). Then, R was compared with S and, similarly, D with S in terms of
three criteria: an appropriate information distance, the Hamming distance
between the probability or possibility distributions, and the difference between
the state sets represented by the systems.

The purpose of these comparisons was to determine how the three criteria
depend on four parameters: the number of variables in the systems, the
number of states that the variables may assume, the size of data employed
in the experiment, and the level of refinement of the reconstruction hypothesis
involved. The studies were restricted (due to tremendous computational
demands) to systems with five variables or less, five states per variable or
less, and data with up to 2,000 observations. Thirty experiments were perfor-
med for each selected combination of values of the four parameters, and the
relevant values of the information distance, Hamming distance, and state set
difference obtained in each experiment were averaged over the 30 experiments.

The studies involved over 70,000 reconstruction analyses of data. Let me
summarize the main results pertaining to the reconstruction principle of
inductive reasoning.

The idealized study clearly demonstrated that S is always better represented
by R than by D in each of the three considered criteria, provided that the
data is sufficient for a reliable identification of the correct reconstruction
hypothesis (the one that consists of the same subsystems as the simulated
system). The reliability of identifying the correct reconstruction hypothesis
was determined by calculating the percentage of relevant experiments in which
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the identification was successful. For probabilistic systems, the reliability is
small for small data (containing, say, less than 50 observations), but it quickly
converges to 100% with increasing data size. The convergence slows down
with increasing number of variables, while it speeds up with increasing
number of states assumed by the variables. For possibilistic systems, the
reliability is 100% (assuming S is a structure system) regardless of the data
size (Klir, Parviz and Higashi, 1986).

The general study showed that the reconstruction principle of inductive
reasoning is valid within a restricted domain of values of the four parameters,
which depends on the risk we are willing to accept that the principle may
occasionally fail. The risk is expressed in terms of the percentage of relevant
experiments in which the principle actually failed. In general, the principle is
applicable to data that contain no more than some specific number of
observations. Let me denote this critical value of the data size by x. Clearly,
x depends on the number of variables (1), the number of states per variable (s),
assumed to be the same for each variable, the refinement level (r), and
the acceptable percentage of potential failures(f). Although the values of
x(n, s, r, f) cannot be specified precisely, they can be loosely estimated from
the experimental outcomes with sufficient precision for practical applications.
Considering, for example, the Hamming distance and taking n=4, s=3,
f=25%, we obtain the following approximate values:

x (4, 3, 1,25 =150,

x (4, 3, 2, 25)=600,

x (4, 3, 3, 25)= 550,

x (4, 3, 4, 25)=1250,

x (4,3, 5,25)=0 (the principle is not applicable at all).

When we apply a stronger requirement, say /= 15%, the application domain
becomes smaller:

x (4,3, 1, 15)=40,

x (4,3, 2, 15=150,

x (4,3, 3, 15)=100,

x (4, 3, 4, 15)=280,

X (4,3,5, 15)=0 (not applicable).

If we intend to apply the reconstruction principle in terms of overall states
that are contained in R but not in D, the domain of applicability may be
different. Let y denote the critical value of the data size in this case. This
value depends on n, s, r, and the largest acceptable error (e), expressed in
terms of the incorrect states in R (i.e., states that are in R, but not in S).
Values of y(n, s, r, ) can be estimated from the experimental outcomes only
loosely, but with sufficient precision for practical applications. For example,
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when n=4, s=3, and ¢=10%, we obtain the following approximate values:
Y (4,3, 1, 10)>2,000 (the exact value is beyond the experimental scope),
y (4, 3,2, 10)=1,500,
v (4, 3,4, 10)=130,
¥y (4,3,5,10)=0 (not applicable).

Given a particular value of e, values y(, s, r, ¢) represent the upper (most
optimistic) bounds on the applicability of the reconstruction principle under
the various values of n, s, and r. In practice, however, we are likely to be
willing to use the principle only if the gain in correct states (states in R and
S, but not in D) exceeds the gain in erroneous states (states in R, but not in
S). This trade-off can be conveniently expressed by a simple index

- I R, l h] D f 1
UHR R v
where |R | and | D| denote the total numbers of overall states contained in R
and D, respectively, and [RCI denotes the number of correct states in R.

In general, ¢ is an indicator of how much the gain (the correct novelty)
exceeds the error (the incorrect novelty) when we apply the reconstruction
principle. When ¢ =1, the number of correct novel states exceeds the number
of erroneous states exactly by 1 and, consequently, the reconstruction princi-
ple is applicable for situations where ¢=>1. The larger the value of q, the
more powerful the principle is. As an example, Table 1 shows the values of
q for n=4, s=3, and then different numbers of observations in data (N).

Table 1. Values of g4 given by Eq. (1) for n=4, s=3.
(N number of observations in data; r : refinement level).

r N=10 20 30 40 50 75 100 200 1,000 2,000
[ L300 250 2.85 2.35 1.78 1.49 1.25 1.15 0.77 0.45
2 374 445 3.33 3.01 2.11 1.41 1.25 1.18 0.70 0.40
3 5.46 4.61 3.50 275 2.02 1.51 1.36 L.11 0.63 0.39
4 5.66  4.07 3.38 2.48 1.88 1.43 118 1.06 0.58 0.37
S 2.32 1.89 1.50 1.20 0.99 0.80  0.69 0.62 0.37 0.23

3. Interpretation in terms of pragmatic information

The reconstruction principle of inductive reasoning states that, under cer-
tain conditions (partially specified by the reconstruction characteristics discus-
sed in Section 2), some justifiable novelty (something not explicitly contained
in the available data) can be produced by a reconstruction method at the
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expense of pure conformation to data. It seems reasonable to conceive this
novelty production mechanism as follows: although the novel information is
not contained in the data explicitly, it is encoded in reconstruction properties
of data and can be decoded by a reconstruction method in terms of the
identified superior reconstruction hypotheses at the various refinement levels.

The distance (information-based or Hamming) between R and D can be
viewed in two different ways: as the loss in the degree of confirmation with
regard to data and, at the same time, as the gain in the degree of novelty
associated with the reconstructed system. It has often been argued that neither
pure confirmation nor pure novelty contains any pragmatic information.
Pure confirmation only describes the data; pure novelty basically stands for
chaos. It seems that the reconstruction principle of inductive reasoning
attempts to produce a compromise between the degrees of confirmation and
novelty for which the pragmatic information reaches its maximum. In fact,
the degree of novelty is clearly bound in this principle by the requirement
that the reconstruction hypothesis with the highest degree of confirmation
among a set of competing hypotheses be chosen. The actual bound depends,
of course, on the level of refinement involved; in general, the higher the level
of refinement, the higher the degree of novelty.

The reconstruction principle of inductive reasoning was analyzed in terms
of pragmatic information by Kornwachs (1989). He argues that the degree
of confirmation can be expressed by the function

Conf(S, R, D)=1-Dist(S, R), (2)

where Dist denotes an appropriate normalized distance (information-based
or Hamming). The degree of novelty is then expressed in terms of the same
distance by the function

Nov (S, R, D)= Dist (S, R)— Dist(S, D), ()
=Dist (R, D).

He further argues that it is reasonable to measure the amount of pragmatic
information, Prag(S, R, D), obtained by the reconstruction principle by the
product of the degrees of confirmation and novelty:

Prag (S, R, D)=Conf(S, R, D).Nov (S, R, D), 4
=[1-Dist(S, R)]. Dist (R, D).

The knowledge of the dependence of pragmatic information on the four
parameters (1, s, r, and data size), which can be obtained by simulation
experiments described in Section 2, provides us with guidelines regarding the

RECONSTRUCTION PRINCIPLE OF INDUCTIVE REASONING 71

gtllity of the reconstruction principle: the utility of the principle is propor-
tional to the amount of pragmatic information it produces; its highest utility

is obtained when the pragmatic information reaches its maximum.

x103

Nov (r=3)

Prag (r=3)

18
14
10
6
Prag (r=1
) g (r=1)
1 1 i 1 1 1 1 1 1
0 200 40 60 80 100 120 140 160 180 200
Number of observations
1
8
6 F
) Conf {r=3) Conf (r=1)
2
L 1 1 I I L 1 L 1

0 20 40 60 80 100 120 140 160 180 200

Number of observations

Figure 1. A typical example of functions Conf, Nov, and Prag.

As an example, Figure 1 illustrates the functions Conf, Nov, and Prag
which represent, respectively, the degree of confirmation, the degree o%
novelt.y, and the amount of pragmatic information associated with the recon-
struction principle of inductive reasoning. The example is based on results
repf)rted by Klir and Parviz (1986, p. 380, Table 6) for systems with four
variables (n=4), three states per variable (s=3), at the first and third refine-
ment levels (r=1, 3), and for data size range of 0-200 observations.
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The plots in Figure 1 are based on 30 experiments, which were performed
for each segment of data with specific numbers of observations (25, 50, 100,
150, 200 within the range shown in Figure 1). Consequently, they are only
rough estimates of the functions. Nevertheless, they provide us with broad
guidelines regarding the utility of the reconstruction principle, which may be
described by the following fuzzy proposition: the utility of the reconstruction
principle is high when the number of observations in given data is close to
50 at the first refinement level and close to 40 at the third refinement level.

We can also use the experimental results to calculate the maximum amount
of pragmatic information for each data size. These maxima, together with

Table 2. Maxima of pragmatic information for n=4, s=3 (Klir and Parviz, 1986).

Data size | 25 50 100 150 200 300 400 500 1,000 2,000

Prag .061 .044 032 016 .010 .008  .003  .003 0 -.003
4 4 4 3.4 3 3 1 1 1 1

¥

max

the refinement levels at which they occur, are given in Table 2. We can see
that the reconstruction is best utilized when the number of observations is
close to 25; on the other hand, it is not applicable or it is even counterproduc-
tive when the number of observations is close to 1,000 or greater.

4. Example

A study regarding the reconstruction principle of inductive reasoning was
recently performed by Hinton (1989). The study involves data consisting of
a time series with 8,192 observations of two variables, each with four states.
The data were collected during an ergonomic experiment; their meaning,
which is not essential for our discussion, can be found elsewhere (Bayer,
1983; Klir et al., 1988).

By a probabilistic mask analysis (Klir, 1985) of the data for five sampling
variables, Hinton found that the mask shown in Figure 2 had the smallest
predictive uncertainty. Viewing the overall probabilistic system (obtained by

4
2]

Figure 2. Mask in the example discussed in Section 4
(the integers indicate the locations of the sampling variables employed).
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exhaustive sampling of the full time series by this mask) as a reference, she
then studied the question of how much we can infer about this system from
various subsets of the given data by using the reconstruction principle. She
performed experiments with subsets of data containing 50, 100, 250, 500, and
1,000 observations. For each data size, she ran 10 experiments for different
segments of the given time series and calculated average values of the indivi-
dual experimental outcomes.

Using relevant Hamming distances obtained by Hinton in this study,
which are not necessary to be reproduced here, we can calculate pragmatic
information produced by the reconstruction principle for the various exper-
imental instances. For each data size, maximum pragmatic information is
obtained for some refinement level. These maxima are given in Table 3,

Table 3. Maxima of pragmatic information (Hinton 1989).

Data size 50 100 250 500 1,000

Prag L007 L0199  .033 025 .021
r 9 8 8 6 5

max

together with the refinement levels at which they occur. We can see that
the reconstruction principle is best utilized in this example for data with
approximately 250 observations, which is almost 25% of the 1,024 potential
states (5%=1,024).

It is also interesting to examine the dependence of the number of recon-
structed states on the data size and on the refinement level. The experimental
outcomes obtained by Hinton are given in Table 4. The three columns under

Table 4. Reconstructed states in the study made by Hinton (1989).

Number of observations

! 50 100 250 500 1,000

0 8§ 0 0 15 0 0 36 0 0 60 0 0 95 0 0
1 8§ 0 0 IS 0 0 39 3 1 68 8 3 107 12 8
2 8§ 0 0 16 1 1 46 10 4 80 20 9 124 29 19
3 9 1 0 18 3 1 54 18 8 89 29 17 13237 32
4 9 1 0|23 8 4 64 28 12 101 41 31 153 58 62
5 o 21 27 12 6 72 36 23 119 59 49 68 73 90
6 12 4 1 33 18 10 85 49 35 134 74 78 176 81 124
7 s 73 41 26 17 101 65 61 164 104 141 195 100 214
8 17 1t 3 57 42 32 115 79 88 182 122 179 204 109 244
9 21 13 4 73 58 63 130 94 150 198 138 314 210 115 351
10 24 16 8 | 80 65 125 134 98 260 199 139 543 212 117 649
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each number of observations contain the following entries for each r (r=0 is
used for system D):

— first column: |R,|;
- second column: |R.|—|D]|;
— third column: |R|~|R,]|.

Table 5. Index g, defined by Equation (1), derived from the entries in Table 4.

Number of observations
7 50 100 250 500 1,000
1 0 0 1.5 2 1.3
2 0 0.5 2 2 1.5
3 1 1.5 2 1.6 1.1
4 1 1.6 2.2 1.3 0.9
5 1 1.7 1.5 1.2 0.8
6 2 1.6 1.4 0.9 0.6
7 1.8 1.4 1.1 0.7 0.5
8 2.8 1.3 0.9 0.7 0.4
9 2.6 0.9 0.6 0.4 0.3
10 1.8 0.5 0.4 0.3 0.2

Table 5 contains values of the associated index ¢, defined by Equation (1),
and indicates the domain of applicability of the reconstruction principle for
producing novel states in this example. It should be mentioned, however,
that all these calculations were made with respect to the reference system
(the one inferred from the full time series), which contains only 231 states in
this case. That is, states produced by the reconstruction principle that are
not among the 231 states are considered incorrect. This may be questioned
since it is not guaranteed that the full time series contains all states that the
variables are capable of producing. In this sense, some of the « incorrect »
states may be, in fact, correct predictions. Which of them to accept as feasible
predictions may be decided, for example, by comparing their probabilities
and accepting those whose probabilities are greater than some threshold
value.

5. Conclusions

Since I discovered the principle of inductive reasoning in the late 1970s, it
has been an enigma to me. At first encounter, the principle has the appearance
of an “information perpetuum mobile” (creating information that is not
entailed in the given data) and, consequently, it is viewed with suspicion. At
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the same time, however, the evidence of its success under certain conditions
cannot be totally discounted. In fact, the evidence obtained by Hai and Klir
(1985), Klir and Parviz (1986), and Hinton (1989) is, in my opinion, suffi-
ciently strong to confirm the principle, even though its domain of applicability
has not been adequately delimited as yet. The latter task is difficult since it
requires massive computer experimentation that is both expensive and time
consuming.

It is important to realize that the reconstruction principle is methodologi-
cally different from the usual conception of inductive reasoning. The latter is
almost exclusively conceived in terms of the so-called “straight rule”, which
is well expressed by the following precept offered by Rescher (1980, p. 100):

When a certain percentage of population P have in fact been observed to have a
particular trait T, then adopt this very value as your answer to the question: “What
proportion of the entire population P have the trait T?”

The reconstruction principle violates the straight rule since it modifies, in
general, the frequencies of states obtained from given data and may produce
additional states that are not contained in the data at all.

How to explain the reconstruction principle? First, let us recall that the
principle is based on the identification of subsets of variables of the overall
system that are strongly related. These subsets of variables are expressed by
the superior reconstruction hypotheses, which are obtained from the given
data by a suitable reconstruction method. Assume now an investigative
situation in which the data are insufficient for obtaining an adequately
accurate characterization of the overall relationship among the variables, but
they are sufficient for the identification of those reconstruction hypotheses
that truly represent subsets of variables that, at any refinement level, entertain
the strongest relationship. It is now fairly well established from the experimen-
tal studies mentioned above that situations of this sort exist for certain ranges
of values of the parameters involved (number of variables, data size, etc.)
and represent a window of opportunity for the reconstruction principle. Let
me explain.

Since each subsystem is associated with a smaller state set than the overall
state set, its relationship is, in general, better characterized by the data than
the relationship of the overall system. This follows from the simple fact that
the ratio between the number of observations and the number of potential
states is greater for the subsystem than for the overall system. This means
that the superior reconstruction hypotheses have the ability to improve our
estimate of the overall relationship based upon the straight rule. Whether or
not we should actually accept estimates derived from superior reconstruction
hypotheses depends on the degree of our belief that the reconstruction




e

76 G. J. KLIR

hypotheses in question do indeed reflect some underlying genuine reconstruc-
tion properties of the variables involved. How can the investigator of a
system be helped to form rationally his or her belief in this respect? I can
offer this answer: he or she can be helped by being provided with useful
reconstruction characteristics obtained from suitable experiments simulated
on a computer, such as those performed by Hai and Klir (1985) or Klir and
Parviz (1986). Results of these experiments, when categorized by appropriate
parameters, allow the investigator to compare his or her investigative situation
with a comparable situation described by the characteristics and make a
Jjudgment based on this comparison. The characteristics may éventually be
supplemented with appropriate guidelines of how to decide, in each particular
investigative situation, whether to use the reconstruction principle or not.

An important feature of inductive reasoning based upon the reconstruction
principle is that it involves aspects of both confirmation and novelty: it
produces novelty and, yet, the novelty is bound by the confirmation of the
reconstruction hypotheses to the given data. This seems to indicate that the
investigation of the reconstruction principle in terms of pragmatic informa-
tion, as initiated by Kornwachs (1989), should be very fruitful.

The problem of the justification of inductive reasoning has been a subject
of great controversy among philosophers for centuries, particularly after the
publication of the well-known and highly influencial analysis of the subject
by David Hume (1739). Many arguments have been invented to overcome
Hume’s scepticism regarding the possibility of justifying inductive reasoning.
When carefully scrutinized, however, each of them turns out to contain some
flaws.

In virtually all attempts to justify inductive reasoning, it is taken for
granted that what is to be justified is the straight rule. The reconstruction
principle challenges this presupposition by establishing conditions under
which it is methodologically superior to the straight rule. This extension of
inductive reasoning to more than one method, each applicable under different
conditions, fits well into the framework of methodological pragmatism devel-
oped by Rescher (1977). The reconstruction principle may even strengthen
the pragmatic justification of inductive reasoning pursued by Rescher (1980),
but it is too early to make any specific claims in this regard.

It is undeniable that major research must yet be undertaken to understand
the reconstruction principle, to delimit its applicability, to develop practical
guidelines of how to utilize it, and to investigate its impact on the philosophi-
cal problem of the justification of inductive reasoning. The main purpose
of this paper is to stimulate the interest of researchers in various fields
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(mathematicians, computer and systems scientists, philosophers) to participate
in this extremely challenging and potentially very important research.
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QUELQUES REMARQUES SUR LA THEORIE GENERALE DES
SYSTEMES ET SES APPLICATIONS
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La conception la plus répandue concernant la « science appliquée » est
celle de la maftrise de I'environnement en vue d’une fin déterminée : faire en
sorte que des choses se produisent ou empécher que des choses se produisent.
Avant 'avénement de la science, la magie (pensait-on) aidait a parvenir aux
fins en question. Associé & lespoir de maitriser les événements se trouve
Pespoir d’au moins les prévoir, puisque la prévision permet a I’homme
d’adapter ses plans et ses actions.

La science a rendu possibles 4 la fois la prévision siire et la maitrise efficace
des événements naturels (ou du moins de certains d’entre eux) et cette
connaissance a fondé le lien intime entre la prévision et la maitrise grace au
paradigme fondamental de I'assertion scientifique : «si..., alors... ». Des
propositions de ce genre, que I'on peut justifier par des prévisions vérifiables
et/ou par des actions efficaces, sont généralement considérées comme consti-
tuant la science elle-méme. Cette conception est sous-jacente aussi bien a
Iattitude positive qu’a attitude négative envers la science. L attitude positive,
engendrée par la réalisation de réves millénaires, n’exige aucune explication.
L attitude négative est engendrée par échec de prévisions ou d’actions (échec
largement considéré comme caractéristique de toutes les tentatives de création
d’une science sociale), par 'usage de la maitrise de forces naturelles a des
fins de destruction (par exemple dans le cas de la « mégatechnologic »
militaire), par Pexistence de sous-produits indésirables de la domination
exercée sur la nature (dégradation de I'environnement), ou enfin par des
usages imaginés de la prévision et de la maitrise dans le but de dominer les
masses (lavage de cerveaux, ingénierie génétique).
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