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QUALITATIVE ANALYSIS OF SYSTEM DYNAMICS MODELS

J. ARACIL, M. TORO

Escuela Superior de Ingenieros Industriales '

Abstract

System Dynamics supplies conceptual tools to build computer simula-
tion models. These models, as mathematical objects, are nonlinear
dynamical systems which can show different long term behavior
modes (attractors). The qualitative theory of dynamical systems sup-
plies a body of techniques that allows to classify the attractors and
then to elucidate the long-term behaviors of a dynamical system. In
this paper steady states and transients are analyzed with qualitative
techniques. They are applied to some representative system dynamics
models.

Résumé

La Dynamique des Systémes fournit des instruments théoriques pour
la construction des modéles de simulation par ordinateur. Ces modéles
sont des systémes dynamiques non-linéaires qui peuvent exhiber des
comportements différents 4 long terme. La théorie qualitative des
systémes dynamiques fournit un ensemble de techniques qui permet
de classer les attracteurs, et d’élucider les comportements 4 long terme
du systéme dynamique. Dans cet article on analyse par des méthodes
qualitatives aussi bien les états stationnaires que les états transitoires.
Ils sont appliqués a certains modéles de Dynamique des Systémes.

1. Introduction

System dynamics was conceived originally by Jay W. Forrester as a system
methodology leading to computer simulation. It supplies very interesting
tools for building models to simulate the behavior of concrete systems in a
wide variety of fields (corporations, urban areas, economic an ecological
systems, world models, ...). Its main strength rises from the possibility of
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494 J. ARACIL, M. TORO

translating the mental models of the expert on a given concrete system
into a dynamical system (set of first order differential equations) that once
programmed on a computer simulate the actual behavior of the system. The
link between the model structure and the behavior this structure gives rise,
allows an analysis of the concrete system which can be used for defining
policies to improve the system behavior.

It has been claimed that qualitative data are the basis of system dynamics
models. However, the word qualitative has been used by many people with
different meanings. For the system dynamicist there is a certain tendency to
use this word with a meaning which aﬁ’ﬂ'oximates linguistic or non-quantita-
tive (Wolstenholme, 1985). Here, however, we shall use it whith the precise
meaning given to it in the qualitative theory of dynamical systems (Abraham
and Shaw, 1987; Guckenheimer and Holmes, 1983; Hirsch and Smale, 1974).
This meaning has a geometrical or topological connotation. It is our conten-
tion that this use is extremely relevant to system dynamics.

It is well known that system dynamics is the study of how structure
determines behavior (fig. 1). In this context structure means a network of
influences between the elements or parts of a system (Bunge, 1979). The
structure gives the system its entity as something different from its parts.

/ﬁucmﬂj_»j;mwoj\
NY
L

\ f

A e = A

._/

Figure 1. — Structure and behavior in system dynamics.
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The graphical image of a structure is a graph where the arches are the
relations of influence. In system dynamics this graph is called the causal or
influences diagram (fig. 1b). It represents an scheme of the mental model of
the experts. Behavior to the system dynamicist means time evolution of the
system variables (fig. 1e).

In system dynamics the link between structure and behavior is obtained
by a model (fig. 1¢), which is the main conceptual tool. This methodology
supplies the means to translate the mental model into the causal diagram
(the structure of influences of the system), and then into a dynamical system
(a set of first order differential equations) which is usually known as the
model of the concrete system to be studied. System dynamics is an applied
methodology and deals always with concrete systems.

The model, once programmed on a computer (fig. 1d), allows the time
plots of the system variables to be obtained (fig. 1¢); and thus its behavior.
In this way the link structure <> behavior is obtained (fig. 14). Looking at
this simple chain it would appear that given a structure we get a single
behavior mode. The normal use of the computer in simulation strengthens
this first impression. However things are not so simple. A given dynamical
system can show many behavior modes. One of the objectives of the qualita-
tive analysis is just to elucidate those different modes of behavior.

A model in system dynamics is a mathematical object known as a dynamical
system. These dynamical systems exhibit a transient behavior after which the
evolution of the model tends to reach a permanent regime, which is the long
time behavior of the system. In the state space, these long term behavior
modes are represented by geometrical objects called attractors.

The qualitative analysis of a dynamical system begins with a search of all
the attractors the system has. There are three main types of attractors:

1. The point or static attractor, which corresponds to a stable equilibrium.
The behavior of the system is characterized by trajectories that approach the
attractor and remain static once reached (fig. 2a).

2. The periodic attractor, which shows a stable fundamental oscillation. A
system approaching the attractor will behave progressively like a perfect
oscillation as the time goes on (fig. 2b).

3. The chaotic attractor, also called strange attractor, where the motion is
not periodic and does not show any regular pattern (fig. 2¢).

A given dynamical system can have many attractors. In nonlinear dynami-
cal systems multiple attractors are common. Point attractors coexist with
periodic and chaotic attractors. This fact is related to the nonlinearities of
the system (linear systems show only one attractor, except in degenerate




496 J. ARACIL, M. TORO

a) q)

Figure 2. — The three main types of attractors.

cases). We can associate at least one behavior mode to ev.ery attractor. IIn
this way, by classifying attractors we can have a first insight into the behavior
modes a given system can show.

Associated with every attractor is the ensemble of all starting points (initial
conditions) that lead to it. This set is the basin or region of attraction of the
given attractor. The basins are enclosed by separatrices. The stgte space of a
dynamical system is partitioned in the attraction basins of all its attractors.
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The state-space with the attractors, basins and separatrices drawn upon it is
called the phase-portrait of the dynamical system. The phase-portrait gives a
global insight into the behavior modes of the system.

Changes in parameters of a dynamical system determine changes in their
phase-portrait. If these changes do not modify the nature of the phase-
portrait (the number and type of the attractors), then the system is said to
be structurally stable. This property ensures the robustness of the model, and
thus the conclusions obtained from it; otherwise, a bifurcation occurs giving
rise to a qualitatively different phase-portrait. Catastrophe theory (Poston and
Steward, 1978; Thom, 1977; Zeeman, 1977) has provided excelent examples of
bifurcations. The main tool to study bifurcations in a dynamical system is
the bifurcation diagram. These diagrams allow to analyse how changes in the
parameters can qualitatively modify the behavior modes of a system.

With the help of qualitative analysis we can get a global perspective on
the behavior modes a system can show (phase-portrait), and on how changes
in parameters modify these behavior modes (bifurcation diagram). This last
can be considered as a sort of generalized sensitivity analysis. The interest of
sensitivity analysis to system dynamics has long been emphasized (Forrester,
1969, pp. 110-111). The object of this analysis is to study how changes in
parameters determine changes in the behavior modes of the system (Ford et
al. 1985). However, qualitative analysis takes priority to classical sensitivity
analysis as it gives a global perspective of the behavior modes, whereas
sensitivity analysis only gives a local view (around the nominal trajectory).

The qualitative analysis is based on tools of geometrical nature. These
tools take advantage of the graphical possibilities of the computers. They
help to develop a deep intuitive comprehension of the mechanism underlying
the behavior of the model, and, in this way, to understand how the behavior
is generated and how to act in order to modify it. The examples in the
following sections will illustrate these possibilities.

The actual implementation of qualitative analysis techniques is practically
restricted to small size models, However that is not a great disadvantage as
in recent times greater emphasis has been placed on small models in the
system dynamics community (Forrester, 1986; Morecroft, 1986). These small
models show a greater transparency for the dialogue between “experts mental
model” and “‘simulation model behavior”. This dialogue can be greatly
extented with the tools supplied by the qualitative analysis techniques.

2. Qualitative analysis of urban dynamics models

Let us now be more concrete and consider an elementary system dynamics
model such as the BSNSS3 taken from (Alfred and Graham, 1976). This is
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one of the simplest models we can find in system dynamics. However it.s
structure is not restricted to this case, and has some generality because it
models the logistic growth, which is wide-spread. Model BSNSS3 Ircpreser}t
the evolution of economic activity in an urban area. Its Forrester diagram 1s
shown in figure 3. It has a single level variable: the business struczure; BS,
which measures the cconomic activity of the area. It has two rate variables

BLM

1

1LFO

Figure 3. — Diagram and tables of the BSNSS3 model.
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(business construction BC and business demolition BD) each one with an
associated parameter (business construction normal BCN and business demoli-
tion normal BDN). The ratio between these two parameters defines parameter
p=BDN/BCN which will be used below.

This model can be expressed mathematically in the form of the equation:

% =BS(BCN x f (k x BS) ~ BDN) (1)
a

which can be written in a more conventional mathematical form:
y=ynf (ky)—m) 2

where the dot stands for the derivative with respect to time, y=BS, n=BCN,
m=BDN, k is a constant and table function f'is defined in figure 3. For
details see the above reference. The table functions will be represented by f.
This formalism is most convenient for mathematical manipulations. It is
assumed that computer simulation is done with the help of pynamo.

Depending on the values of the parameters BCN and BDN, and on the
initial conditions, model BSNSS3 shows to different qualitative long-term
behavior modes: growth or decline.

One of the main tools for the qualitative analysis of a dynamical system is
the equilibria locus which is sometimes (although improperly) called the
bifurcation diagram. It plots the equilibria versus parameters (fig. 4). The

Figure 4. — Equilibria locus of the BSNSS3 model.
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equilibria of (1) meet condition y=0. Hence either
y=0 ©))

or

fky)=p )

where p=m/n. The set of points in the plan.(p,y) which verify at le.astl one
of the Egs. (3 or 4) is shown in figure 4 and it rep.re':sents the g}ulhbna (zcgs
of (2). To complete the equilibria locus the stability of equilibria must be
studied. o '

Figure 4 is obtained by drawing the stable equ1‘11br1a.\iv1tl’1 a continuous
line, and the unstable ones with a broken line. This eqmlllblrla locus cari) E)e
easily obtained (Aracil, 1981). Computer methoc%s for obtaining Fhe eqfnh 113
jocus are allowable, based mainly on continuation methods (Mittelman an
Weber, 1980; Kubiceck et al., 1983). '

An amazing amount of information is compressed in figure 4. This aforma-
tion can be displayed in the set of graphs of figures 5. For values of p<p11
the system shows a single attractor. This means that wh.atever thev m1t1§
conditions are, the trajectories will have the shape shown in figure 5a. This

=2 <3

Figure 5. — Diffcrent behavior modes in the BSNSS3 model.
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is the kind of behavior which can be called growth. For p>p, there is also
one attractor, but in this case it represents decline. The number of business
tends towards zero for all initial conditions (fig. 5b). However, for p, <p<p,
growth or decline can occur depending on initial conditions (fig. 5¢). If they
are below S in figure 5¢, then decline occurs. If they are above S, then
growth happens. In this way figure 4 gives a global insight of the different
behavior modes the model can show, and can be used as a guide for
simulation and for policy implications studies. It should be noted that qualita-
tive has a precise meaning here. We have two qualitatively different behavior
modes, associated with two attractors of the dynamical system.

The question that first arises about the viability of the qualitative analysis
program for system dynamics is what happens if the model has (as usual)
some degree of complexity (the dimension of the model is at least medium
sized). Some answers can be given to this problem (Aracil, 19815, 1984).

Consider the set of models of the Alfeld and Graham book. This is a set
of models of growing complexity that can be organized in a hierarchical

OIMENSION ¢ / URBAN2
DIMENSION 3 BSNSS4 URBANI HOUSES
A
DIMENSION 2 FOFBSN.
el

BSNSS3
DIMENSION | BSNSS2 POPT

BSNSST

L

Figure 6. — Set of urban models in Alfeld and Graham book.

structure as shown in figure 6. The lowest strata models have the same degree
of complexity as the above model BSNSS3. The highest levels are obtained
from the lowest ones through a disaggregation process. Qualitative analysis
should be applied throughout this process and there are tools to study the
appearance of new behavior modes (new bifurcations) through this disaggre-
gation process (Aracil, 1986). It can be shown that under very general
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conditions, URBAN2 shows the same behavior modes (growth or decline)
and are organized in the same ways as for BSNSS3. The disaggregation
process, as developed by Alfeld and Graham, does not add any qualitative
innovation (in the precise meaning we give here to qualitative) to the modeling
process. The details of this approach can be found elsewhere (Toro and
Aracil 1986; Toro, 1987).

If we consider the possibility of a spatial disaggregation things are different,
and new behavior modes (the loss of homogeneity) can appear. Consider
that an urban area is divided into two sub-areas, each one modeled with a
model like (2), and that they are connected by a process of linear diffusion
with parameter 6 (Aracil et al., 1985). This situation can be described by the
following equations:

y=n(f (k(y)=p)yi+3(r2—y1) (5)
)'.’2 =n(f(k(y2) -p)y, o —y2)

where y, and y, stand for the business structures in each sub-area. For more
details see (Aracil et al., 1985).

Qualitative analysis has allowed parameter regions to be defined where
disaggregation does not have a significative effect, and other regions where
disaggregation has a considerable effect on the representative capabilities of
the model. Tt should be remarked that the spatial disaggregation just described
allows for a link between Forrester system dynamics and Prigogine dissipative
structures (Nicolis and Prigogine, 1977). Consider a spatial structure formed
by elementary modules connected through a diffusion (transport) mechanism.
In such spatial structure Forrester system dynamics can deal with the mode-
ling in a module, whereas dissipative structures copes with the spatial inhomo-
geneous pattern which appears spontaneously due to the instabilizing effects
of diffusion.

3. Time-scale decomposition of system dynamics models

To implement the qualitative analysis of some medium-sized dynamical
systems the method known as the fwo time-scales decomposition can be
applied. It consists of a decomposition of the dynamics of the model into
two qualitatively different time-scales: one fast and the other slow. This allows
the study of a dynamical system to be simplified by means of two small
dimension subsystems that evolve into two different time-scales. We have
some conventional mathematical results that permit us to state that if the
equations of a dynamical system are given in the form (Sastry and Desoer,
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1981):
dx o
i (x, » 6)
dy
& = X
” g(x, ») N

where € is al pafameter that takes a small value, then the trajectories of this
system starting in (x,, yo) can be approximately decomposed into:
(a) a fast motion in the variable y, with x=x,=Const., and with equation:

dy _

e =g(xp, ¥) ®

where ©=1/¢, being t the fast time-scale.

(b) a slow motion on the confi i
« guration space C, defined
C={(x,»):g(x, »)=0}, and with equation: ned oy
Dr
0 x, ¢ (x)) ©)

where g (x, ¢ (x))=0.

It should be noticed that the equilibri
quilibria of (3) are on C
the fast motion tries to reach C. © n © and consequently

So long as a model of any dimension can be written in the form (6, 7
then t.he. above decomposition can be applied to it, allowing the analysi; o)%
the original system to be simplified. In certain cases folds in the configurati
space allov‘v problems of qualitative change to be understood, as we fhal] soen
below. This decomposition can be applied recursively, so tilat the ori inei
system can be decomposed into two, then into four, a;ld so on. In thisgw:y

we have, among gther things, a method to reduce the dimensionality of a
large scale dynamical system.

An. example of the applicability of the multiple times-scales analysis i
supplied .by the Maya civilization collapse model (Hosler et al 1‘977)3’ Th%s
moc.iel tries Fo simulate the collapse of Maya civilization whic.}’l tookA laclz
during the ninth century A. D. This collapse is a great archeological enri) m
and.the model is based on the opinion of expert archeologists, who trg ta
eluc.ldate the mechanism of the collapse. The model is a good’ exam ly Of
the interest of system dynamics for Historical Sciences. e

After the model was built it was used to try to find policies that could
avoid the collapse. This was done by a trial-and-error method and successive
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simulations of the model. However, even if this latter approach finds some
policies that avoid the collapse, a global perspective of how they are generated
is lacking. To avoid these shortcomings the method here proposed has
been successfully applied and the occurence of the Maya collapse has been
geometrically explained through a fold in the configuration space (fig. 7).

Figure 7. — Configuration space of the MAYA model,
with the fold that produces the collapse.

The policies to avoid the collapse are easily defined: they are those that
do not reach the fold of the configuration space. In this way we can get a
global and geometrical insight into the behavior modes of the system. The
policies found by the modellers by simulation are embedded in the wider
family that can be found by qualitative analysis. The full details of the
analysis can be found elsewhere (Aracil and Toro, 1984).

4. Qualitative analysis of transients in a system dynamics model

In this section the qualitative analysis of a system dynamics World model
is considered. It is analyzed a two level model which tries to represent, in a
very elementary way, the interactions between human activity and the carrying
capacity of the Earth. This model can be considered a simplified version of
the models World-2 (Forrester, 1973) and World-3 (Meadows et al., 1974),
and tries to grasp their main qualitative features. It concentrates on the
interaction between “human activity” and “carrying capacity” and tries to
explain the qualitatively different behavior modes shown in figure 8. The first
one represents the collapse of manking, and the second the possibility of a
stable accomodation to finite resources.
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(a)

®) HA

Figure 8. — Behavior modes in the simplified World model:
CC carrying capacity; HA human activity.

; 1The diagram. of the model is shown in figure 9. The presence of a
elay representing the voluntary response to population pressure should be

noted. A detailed description of this model i
136 el can be found in (Randers, 1980,

This rpodel is able to show the two main behavior modes that the model
have tried to represent: 1. the erosion of the carrying capacit ande tehrs
subge'qu.ent collapse of the human activity (fig. 8a); and 2 t}?]c; materi 61:
equxllbnum obtained through changes in socia‘l policie’s (fig S‘b) Theseetrla
behaylox' modes were obtained through a parameter adjusfme.:nt 01'" the m c;V ;)
by trla.l—and—error and successive runs of the model. With the aid of ualitZt'e ,
analysis we are now better able to understand how these behavior (rlnode 1‘{6
produced an why the transition between both behavior modes happens S
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Figure 9. — Diagram of the World model. NI net increase; HA human activity; DMA degeneration 1o ° 1 2
NIMP net increase multiplier presure; : Figure 10. ~ Tables of the World model
. v of the World model.

multiplier activity; DG degeneration; CC carrying capacity;
JEP involuntary effect of presure; PPE presure on physical environment; VRP voluntary response
to presure; RG regeneration. From Randers, 1980.
The thi ati .
hird equation represents the slow motion and the two first represent

the fast one. The configuration space C is given by the equations:

To simplify the model a bit further the third order delay has been changed

to a first order delay. This does not affect the main qualitative behavior nx (2 + £, (x/7) =0
modes of the model. In this way we have a third order dynamical system, JLGy)= an
whose equations are: ~ (a=»)fs (la)=by s (x/xo)=0 (12)
dx i 2+ f Ge)) évcsc;rdmg t(l) thehconventional results of theory of dynamical systems with
Z=px(z+f, (xly ime-sc t ai i
- . oo e 1a eﬂs; e_tmjectones of the model (10) are formed by a fast motion
0 o CLP cléLf—ljo——(éonst., that tends toward the intersection of this plane
[ ol — 1 irve C, followed b | i : .
o (a—W)f5(yla) by fu (x/x0) (10) equilibrium, y a slow motion over this curve until it reaches the
dz . When th ilibri i : . .
= =(fa(x»—2)T D of f € ethbuum ~ls as in figure 12 trajectories tend to ‘““bend” the
dt t' p : igure 11 and it is possible to understand how the hump appears in
ime trajectories. To avoid this hum AVl
where, x stands for the ‘‘human activity” HA, y for the “carrying capacity” the equilibrium should be “move df’tzn?h:o;ifr?se:fﬂz - dVgldFthe}TO“apSe,
urve C. Furthermore,

pulation pressure”. Tables are in this last case a relative optimum of human activity x should be hed
n cas : f hum 2 reached.
his case is shown in figure 13. This is in fact the solution adopted in

ameter T in this equation take on a large value, then it (Randers, 1980). However, the analysis developed here suppli
two time-scales. insight into how it is reached. supplies a better

CC, and z for the “voluntary response to po
given in figure 10.

If the values of par
is clear that the set of equation (10) can be decomposed in
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O

]
1

Figure 11, — Configuration space in the World model
and projection of the configuration space on the plane (x, y).

of trajectories and the equilibrium on the plane (x, )

Figure 12. — Protection
when the collapse occurs.

5. Chaos in an autonomous ecological system

In this Section we analyse the chaotic motion of a model which describes
the behavior of a prey-predator-food system. Ecologicall systems §upply many
interesting examples of concrete systems where n?od.ellmg techrﬂl.lqu.es can be
applied and where interesting cyclic behavior.(perlodlc and aperiodic) occiiursCi
A very interesting and elementary system is the one formed by the foo
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£ 2 3 « s 5 X

Figure 13. — Projection of trajectories and the equilibrium on the plane (x, y)
when the collupse is avoided.

chain between a predator, a prey and the food for the prey in some habitat
with limited resources. For instance, the system formed by deers, wolves and
vegetation. Actually these chains show behavior modes where cycles occur,
with many different patterns. Of this three-level structure, the sub-structure
formed by the predator and the prey, and the one formed by the prey and
their food have received some attention in the literature (Taylor, 1984; Peschel
and Mende, 1986). However, as far as we know, the full chain has not been
studied and it is a very interesting system that can show a huge variety of
behaviors.

This system can be be modeled by mixing two well known models: the
predator-prey model (Henize, 1971) and the Kaibab plateau model, which
copes with the prey-food part of the model (Goodman, 1974). As a matter
of fact, the model introduced here can be considered as a modification of
the Kaibab type model, where the predators are not extinguished but an
interaction between predators and prey of the kind suggested by the Lotka-
Volterra models is allowed. This model has previously been introduced in
(Toro and Aracil, 1988). The model introduced here is a simplified version
of that one, but that retains their main qualitative characteristics. This model
shows a great variety of behaviors, including chaos. Previous results can be
found in (Toro and Aracil, 1986).

The equations of the model are:

x=x(g; (w)—2) (13)
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z=b,z(x—by) (14)
y=g,(y)—min(y, x) (15)

where x, z and y stand for prey, predator and prey-food respectively and
where w=x/y. The algebraic form for g, and g,, is given by

(16)
(7

g, (w)=—a, (w—ay)(w— as)

2= (y=Dy—c)

where g, represents the prey birth rate, g, the regeneration rate and the
consumption rate is given by min (x, y); that is, the minimum between what
would consume the prey and the global resources allowable.

It should be observed that for y=Const. the two equations (13) and (14)
represent a slight modification of the classical Lotka-Volterra predator-prey
model. This model is slightly more complex than the Lotka-Volterra one,
but has the advantage of being structurally stable. It shows oscillations that
are “robust” against perturbations in the model. That model shows point
attractors and limit cycles. Between the behaviors associated with both attrac-
tors a Hopf bifurcation is produced.

In a similar way, if only equation (14) and (15) are considered one has a
model of the interaction of the prey and their food. Then we have a model
similar to the Kaibab plateau model (Toro, 1987) which shows a very
interesting colapsing behavior, if the resources are exhausted.

For some values of p.rameters dynamical system (13, 14, 15) shows a
chaotic attractor. This type of attractor appears when the value of the
parameter b, is small. For instance this happens for the set of values of
parameters:

a,;=0.1, a,=0.7, az=-03
h,=0.1, b,=0.05
(31—_—0.5, CZ:“O'I

System (13, 14, 15) can be analysed as a two time-scales dynamical system.
Then a geometrical understanding of the chaotic attractor can be obtained.
The slow time-scale is associated to variables x and z, whereas the fast one
is to variable y.

To decompose system (1,2,3) in these two time-scales, first make the
transformation Z=a, z and for simplicity write z for Z. The new dynamical
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system can be written:

x=a; x(~(w—ay)(w—az)—z) (18)
z=b,z(x—b,) (19)
y=g,(y)—min(y, x) (20)

For small values of ¢, and b, (which in our actual case are of the order of
0.1) systerr.l .(IS’ 19, 20) has the required canonical form. The configuration
space (equilibria set of the fast dynamics) is given by the surface:

g, (y)—min(y, x)=0 (21)

The system motion will be formed by a fast motion towards one of the stable
sheets of the configuration surface and a slow motion on that surface (fig. 14)
Tlhe slow motion on the upper sheet (y>y,), where y, is such tha';
£ (»,) =0, has an unstable equilibrium with complex eigenvz:iues. This gives
rise to a helicoidal trajectory which grows until the border of the sheet is
reached. Then it falls with a fast motion to the down sheet. The slow motion
has'no actual equilibrium on the down sheet, but the trajectories tend towards
a virtual equilibrium out of this sheet. The full trajectory on the attractor
shown in figure 14 is obtained joinning the fast and the show motions. This

flgl}l‘@ makes clear the reinjection phenomenon, which supplies an intuitive
insight of the chaos mechanism.

' Elgure 15 shows the Poincaré map for this case. The shape of the map is
similar to others well known in the literature and suggests the chaotic nature
of the attractor. The Lyapunov exponents have been computed to confirm

PREDATOR PREY

Figure 14. — Reinjection phenomenon in an ecological system.
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Figure 15. — Poincare map for the autononous ecological syste

Figure 16. — Actual trajectory of the attractor
of the autonomous ecological system.

this nature. The values obtained have been:
A= 1.29E-3+5.E-5
Ay=— 1.27E—2+4.E-5
hy= —1.78E—1+£3.E-3

The fact that A, >0 confirms the sensitivity to the initial condi'tions. That
means that two points arbitrarely close to each other will become increasiling
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separated for enough long times. This sensitivity is one the most remarkable
characteristics of the chaotic behavior. The algorithm used to compute the
Liapunov exponents is due to Wolf er al. Figure 16 shows a actual trajectory
on the attractor, which shows the same form as figure 14.

6. Conclusions

The relevance of qualitative analysis to System Dynamics models has been
shown in this paper. The techniques supplied by the qualitative theory of
non-linear dynamical system allows us to study systematically the types of
attractors that a given system can show, and how they are organized. In this
way a global insight into the system behavior modes can be reached, which
can be of a great practical interest as a guide to simulation.

The interaction between mental models and all the behavior modes they
can generate, which has been emphasized by Forrester (Forrester, 1986), can
be better understood with the help of the qualitative techniques. Using a
dynamical system only to program a computer and to get trajectories of the
models variables evolution is a poor and restrictive use of that model. We
can learn many more things about the link between structure and behavior
by analyzing that model with the techniques supplied by the modern theory
of dynamical non-linear systems. Furthermore, the adoption of these techni-
ques can serve to counteract certain criticism raised against System Dynamics
(Berlinski, 1976).

In this paper the long time behavior of urban and ecological models and
the transient behavior of an elementary World model has been qualitatively
analyzed. An interaction between the qualitative analysis developed here and
computer simulation, which allows to obtain the trajectories, is necessary to
dig out all the conclusions a System Dynamics model can supply.
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