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AN APPLICATION OF APPROXIMATE
REASONING TO CHEMICAL KNOWLEDGE!

Matthais OTTO

Department of Chemistry Bergakademie Freiberg!

Ronald R. YAGER

Machine Intelligence Institute Iona College?

Abstract

We are concerned here with the problem of estimating the properties
chemical compounds based upon knowledge of similar compounds which
may exist in a chemical database. In addition we allow for inclusion
of general knowledge of chemistry which may exist in the form of
rules about typical situations. A characteristic of this problem is the fact
that much of our knowledge is imprecise and unspecific. We suggest
a methodology for addressing this estimation problem based upon the
theory of approximate reasoning. This approach allows us to deal with
the inherent imprecision, the problem of partial matching as well as
being able function for numeric and nonnumeric properties. The approach
essentially serves as the foundation for an intelligent database.

Résumé

On s’intéresse ici au probleéme de 1’estimation de propriétés chimiques
a partir de la connaissance de similarités entre des éléments qui peuvent
exister dans une base de données de chimie. De plus, on prend en compte
des connaissances générales de chimie qui peuvent étre formulées sous
forme de régles concernant des situations typiques. Une caractéristique
de ce probleme réside dans le fait que la majeure partie des connaissances
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est imprécise et non spécifique. On suggere une méthode fondée sur la
théorie du raisonnement approximatif pour résoudre ce probléme d’es-
timation. Cette approche nous permet de traiter I'imprécision inhérente
ainsi que de prendre en compte des propriétés numériques aussi bien que
non numériques. L’étude sert essentiellement a 1’élaboration d’une base
de données intelligente.

Introduction

In general, the representation and manipulation of chemical knowledge can
be approached either in a numerical and algorithmic way or symbolically by
means of logic and other artificial intelligence (AI) tools. In spite of the fact
that quite powerful methods have been developed in recent years to estimate
chemical reactivity, to model chemical strucutre-activity relationships, to
design chemical synthesis or to predict properties of chemical compounds
[1, 2] it is agreed among chemists that not all the chemistry can be converted
into numbers, mathematical models and numerical dependencies. Therefore,
the increasing use of Al-tools for storing and handling chemical knowledge

can be envisaged as a natural step to help further integrate the computer in
the chemical laboratory.

In the present work we address two objectives of working with chemical
databases:

i) Predicting missing physical and chemical properties of compounds by
taking into account available information in the database, and

'ii) reasoning about possible properties by considering commonsense che-
mlcal knowledge. In this paper the theory of approximate reasoning is applied
in a manner that enables crisp and/or uncertain and vague (fuzzy) knowledge

to be manipulated. Examples are based upon a database of organic indicator
dyes.

1. An introduction to the theory of approximate reasoning

The theory of approximate reasoning (AR), which was originally introduced
by L. A. Zadeh [3, 4], provides a systematic methodology for reasoning
with uncertain and imprecise information. In [5] Dubois & Prade provide a
comprehensive survey of this area. AR makes intensive use of fuzzy subsets
[4, 6]. In this section we shall provide a brief introduce to the theory of
approximate reasoning.
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Assume X is a set, fuzzy subset A of X is a subset that can have partial
membership. This facility for partial membership allows us to capture con-
cepts which have noncrisp boundaries. For example, if one tries to represent
the concept of tall there exists some heights which are not completely tall
but neither are they not tall. In [6] Zadeh first introduces the concept of a
fuzzy subset and provides substantial justification for the necessity of such
an object. Formally a fuzzy subset A has associated with it a membership
function U, such that for each @ € X, Up(x) € [0, 1] indicates the degree
to which x is a member of the set A. We shall take the liberty of using A(x)
instead of Ua(x). A semantics that can be associated with A(x) is that it is the
degree to which the element x is compatible with the concept A. Implicit in
this view is the idea of similarity, how similar x is to the ideal of the concept
A. Ruspini [7, 8] has explored in considerable detail the connection between
similarity and fuzzy set membership.

We say that a fuzzy subset A is normal if their exists at least one element
x such that A(x) = 1, normality is closely related to nonullness in ordinary
set theory. The crisp subset B of X consisting of all the elements for which
A(x) > 0 is called the support of A.

In [6] Zadeh provides for the extension of the usual set operations to
fuzzy subsets. Assume A and B are two fuzzy subsets of X. The intersection
(conjunction) of these two subsets, denoted, D = A N B, is also a fuzzy subset
of X which has as its membership function

D(x) = Min[A(x), B(x)].

The set D can be seen as the elements which satisfy both A and B. It
should be noted that the definition for conjunction as all the other definitions
we shall provide are not unique, although they are the standard ones. In [9]
Yager provides a comprehensive discussion of alternative fuzzy set operations.

The union(disjunction) of fuzzy subsets is a fuzzy subset F of X, denoted
F = A U B which has membership function

F(x) = Max[A(x), B(x)].
The set F can be seen as the fuzzy subset of elements that satisfy either A
or B both.

The negation of A, A, is also a fuzzy subset of X defined such that

A(x) =1 - Ax).

If A and B are two fuzzy subsets of X, we say that A is contained in B,
denoted A C B, if A(x) < B(x) for all x € X.

We recall that if X and Y are two sets their Cartesian product, XXY, is a
set whose elements all are pairs (x, y) such x € X and y € Y. If A and B are
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fuzzy subsets of X and Y respectively then their cartesian product, denoted
E = AxB, is a fuzzy subset of the space XXY defined such that for each
x€ X and y € Y, E(x, y) = Min[A(x), B(x)]. More generally if X;, ..., X,
are sets and Aj, ..., A, are fuzzy subsets of X, ..., X, respectively then
X xXs, ..., xX, is a set whose elements are all the n-tuples (x;, ... x,,) which
x; € X;. Furthermore, the cartesian product, E = A;XA,, ... XA, is a fuzzy
subset of X xX,, ..., XX, such that for each (xi, ..., x,), x; € X; it is the case
E(Xla B3 X,,) = Mi'lll[A,'(X,‘)].

Having introduced the basic machinery from fuzzy set theory we now turn
to the theory of approximate reasoning. At the heart of the use of fuzzy sets
in the theory of approximate reasoning is its ability to provide a semantics
for the meaning of words used in natural language.

One very common way of defining the meaning of a concept is by extension.
Essentially extension means that one illustrates the meaning of a concept by
pointing to examples of the concept. Thus if I want to define what I mean
by female I point to all the female objects in a particular class. If I want to
describe the concept tall, in a given context, I list all the heights that I consider
tall. A set provides a natural structure for defining the meaning of words or
concepts by extension. Fuzzy subsets further enhance this ability by allowing
for a more subtle definition of concepts where there is some grayness in the
membership. For example, if I want to define red I can allow a very natural
boundary from red to not red.

We are now in a position to provide a basic introduction to the theory of
approximate reasoning(AR). Those interested in more detail can find it in the
copious literature in the field [5, 10]. The basic elements used in AR are
variables, which we denote as Vi, ..., V,. A variable is generally associated
with a property or attribute of some object. A variable could be a person’s
age, the temperature of a chemical process, or the truth of a proposition.
Associated with each variable V; is a set X; called its base set or universe
of discourse. The base set of a variable indicates the set of allowable values
for that variable. If V is the variable age then its base set would be the set
of integers between 0 and 120.

Information is conveyed in AR by propositions about the variables. Assume
V; is a variable whose base set is X; and let A; be a fuzzy subset of X; an
atomic or canonical proposition in AR is a statement of the form

V; is A,
The spirit of the above proposition is to indicate that the actual value of
V; lies in set A;. More formally the above statement is seen to induce a
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possibility distribution with regards to the value of V; where A; (x) is the
possibility that V; assumes the value x.

It should be noted that in the special case where A, is a singleton A; = {x*},
then our proposition is reflecting the fact that V; = x*. In the other special case
where A; = X; our proposition is providing us with no information about V.

Assume Vi, Vs, ..., V,, are a collection of variables with base sets X, ..., X,
we indicate any subset collection of these variables as a joint variable, ie.
(V1, Vo, V3), (V1, ..., Vi), (V1, Vs, Ve).

Assume (V, ..., V,), is a joint variable then a proposition is a statement
of the form
Vi, .., V) is R
where R is a fuzzy subset of the cartesian product space, X x Xy, ..., XX, the
cartesian product of the base sets of the elements making up the joint variable

V. The intention of such a joint proposition is to indicate that R(xy, ..., x,) is
the possibility of the joint solution V; = x; and V; = x and, ..., V, = x,.

The reasoning process in AR is made up of a three step operation:
1. Translation

2. Conjunction

3. Projection

In the translation phase of the reasoning process we try to represent the
information and knowledge we have available in terms of propositions of the
kind previously described. While we shall just touch upon the various types
of rules for translation from natural language to AR propositions it should be
strongly emphasized that this is one of the most powerful features of AR, its
ability to represent various pieces of knowledge in a unified format.

Conjunction consists of the process of fusing the individual pieces of
information to obtain their combined effect. Essentially the idea here is that
each proposition essentially restricts the allowable values of its constituent
variables. Thus two or more propositions are combined by requiring that
the constituent variables satisfy all the constraints imposed by the individual
propositions.

The third step in the reasoning process is the projection process. This
process allows us to obtain the value of any variable from a statement about
a joint variable.

In describing the formal mechanism of AR we need first provide a
description of the projection operation.
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Definition: Assume V is a joint variable V,, .., V, and we have a
proposition
Vi, ..., V) is R

where R is a fuzzy subset on the cartesian product of base sets of R, X. The
projection of V on V; is defined as the proposition

V,‘ is A,‘
where for each x € X

Aj(z) = Max R(m, 2, ..., ,)
over all
(i, :c,‘)
such that
Using the definition of projection we define the first inference rule of AR,
the projection principle: From a proposition (Vy, ...V,) is R we can always
infer V; is A; where A; is the projection on R onto X;.

Example: Assume (V,, V,) is R where

79 1 2 15
= {(a, D’ (a,2)" (a,3)" (b, 1)" b, 2" (b, 3)}'

.
From this we can infer Vj is {l, 2 and V, is 'Z, 1—9—, ! .
a b 1273

It should be carefully noted that a proposition such as V is A indicates that
the value of V must lie in the set A. From this it is easy to see that if we
can infer that V also must lie in B where A C B. This observation forms the
basis of the second important inference rule in AR the entailment principle
[3]: Given a proposition V is A we can infer the proposition V is B where
A C B. This principle is a very powerful inference mechanism in AR.

Two important concepts in AR are those of possibility and certainty.
Assume V is A and V is B are two propositions where A and B are both
fuzzy subsets of X. The possibility of the validity of the proposition V is B
given the validity of the proposition V is A, is denoted, Poss[V is BIV is A]
and is defined as

Poss[V is BIV is A] = Max [D(x)]
where D = A N B (D(x) = A(x)AB(x)). The measure essentially measures the
degree of intersection of the two propositions.
The certainty of the validity of the proposition V is B given the validity of
the proposition V is A, is denoted, Cert[V is BIV is A] and is defined as

Cert[V is BIV is A] = 1 — Poss[V is BIV is A].
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The measure of certainty essentially measures the degree to which A is
contained in B and as such measures the degree to which the validity of
A implies B.

One prototypical reasoning situation in AR consists of a case in which we
have two propositions. The first proposition involves a relationship between
two variables. The second proposition provides information about one of the
variables. The object of this situation is to obtain information about the second
variable. Let V and U be two variables with base sets X and Y. Assume the
first proposition Py is (U, V) is R, where R is a fuzzy subset of X and Y.
Thus P, provides a relationship between U and V where R(x, y) indicates that
possibility of the pair U = x and V =y occurring. The second proposition P,
states U is E. The procedure used to obtain information about V from these
two pieces of information is as follows:

1. Conjunct P, and P, giving us the proposition (U, V) is H where
H(x, y) = Min[E(x), R(x, y)].

2. The second step is to project H onto V, giving us V is E where
E(y) = Max[H(x, y)].

We have implicitly assumed that the form of the relationship R is already
given. The process of obtaining these structures, the relationship between
variables, is central to the representational step in the reasoning process. A
considerable body of literature has been devoted to the issue of knowledge
representation using approximate reasoning formalism.

One common type of relationship between U and V is a conditional
relationship,

if Uis A thenV is B.
As suggested by Zadeh [3] one form for translating this statement is (U, V)
is R where
R(x, y) = A(x)VB().
If we use this form in the above we get
H(x, y) = (A(x)VB(y)AE(x) = (A(x)NE(x)V(B(y)AE(x).
If we project H onto V we get V is F where
F(y) = Poss[AIE]VB(y).
We see that if Poss[AIE] = O then F(y) = B(y) and the desired i{lference
is made. In this case we note that Poss[AIE] = 0 implies that Cert[A[E] = 1

— Poss[AIE] = 1. Thus in this case the proposition V is E assures us that A is
true therefore allows us to make the appropriate conclusion, U is B.
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Let us now consider the other extreme, Poss[AIE] = 1. In this case we
get F(y) = 1VE(y) = 1 and therefore V is X. Thus in this case we see that
we infer that everything is possible and thus have been supplied with no
information. We note *hat Poss[AIE] = 1 indicates that A is possible and
therefore provides no assurance that V is A is satisfied.

In situations where 0 < Poss[AIB] < 1, we get some deformed version of E
F(y) = aVE(y)
where o = Poss[AIB].

The formalism just introduced easily extends to the case in which we have
multiple antecedents. Consider

Po:if Uy is A; and U, is A,, ..., and U, is A, then U is B.
Pi: Uy is E;
P: U, s E,
P, U,is E,.
In this case it can be shown that we can infer V is F where
F(y) = Poss[A,IE{]VPoss[A,E,]V... Poss[A,E,]VB.
Thus we see that if any of Poss[A;IE;] = 1 the rule doesn’t fire.

2. Inferring chemical properties by approximate reasoning

Properties of chemical compounds are characterized by numerical attributes,
such as "bonding energy" or "boiling point", by linguistic variables, such as
“color” or "solubility" or by describing their reactivity by qualitative concepts,
such as "the theory of hard and soft acids and bases" or "inductive” and
"mesomeric” effects.

In the past most of effort has been put into attempts to quantify these

properties by numerical values and to reason about them, in an algorithmic
manner.

Using the methods of the theory of approximate reasoning there is no
need to restrict chemical knowledge manipulation to numerical approaches
since linguistic quantifiers and qualitative concepts can be handled either
symbolically [11] or by representing these variables as fuzzy sets in a
mathematically exact way.

Consider chemical compounds with attributes V,;, V,, U taking their values
respectively in the sets X, Xp, Y. If A, A|, A, ..., A, and B, By, By, ..., B,
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and Dy, D, ... D, are subsets in X;, X5, Y, respectively, then the chemical
database is:

COMPOUND NO v, v, 19
0 A B ?
1 Ay B, D, o))
2 Az Bz DZ
n An Bn Dn

In the above for compound number O only the attribute values for V; and V,
A and B, are known while the value for attribute U is unknown and is to be
estimated. We shall denote this unknown as D.

We can represent the information in the above database in terms of
production rules as follows.

if V{is A; and V, is B; then U is D,
if Vi is A, and V; is B, then U is D, 2)
if Vi is A, and V, is B, then U is D,
In addition, we have the knowledge about compound O in the form of the
following propositions
Viis A
V,is B 3)
Our objective is to use the above information to obtain the missing U value

for compound O denoted by D. Based upon the theory each of the above
production rules induces a relation H; on Y such that

Hi(y) = Poss(A/A)VPoss(B,/B)VD,(y)
Ha(y) = Poss(A,/A)VPoss(B,/B)VDa(y) “4)
H,(y) = Poss(A,/A)VPoss(B,/B)VD(y)
where F(x) = 1 — F(x), Poss(F/E) = Max, [F(x)AE(x)] and A= min, V= max.
The individual H;(y) are combined by anding them according to obtain the
inferred value D for U.
D(y) = Hi(y)AHa(y)A...AHy(y) 6))
To understand the inference pattern expressed in equation (4) we discuss it
in a crisp sense in some more detail.

If a term Poss(A;/A)VPoss(B;/B) evaluates to 1 then H,(y) also evaluates to
1 and hence provides no contribution to the determination of the desired value
D. On the other hand if the term Poss(A;/A)VPoss(B;/B) evaluates to zero
then H;(y) evaluates to D;(y) and provides a contribution to the determination
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of D(y). The term Poss(A;/A)VPoss(B;/B) evaluates to one if either of the
components evaluates to one. Let us look in more detail at a term of the form
Poss(A;/A). Poss (A;/A) = 1 if A; N A # ®. In this case our information, A,
is such that we are not certain that the antecedent condition A; is satisfied,
therefore our rule doesn’t fire. On the other hand Poss(A;/A) = 0 if A; N A
= @, In this case our information, A, is such that A C A; and we are certain
that our antecedent condition is satisfied thus not preventing the rule from
firing. The same analysis holds for B and B;.

As an example of the application of this technique we refer to the chemical
data of Table 1.

In order to evaluate the performance of the method, colors of different
indicators are to be estimated using known values of the maximum absorbance
coefficient, €y, and the wavelength of maximum absorbance, An.. (The
"solubility in water” and the negative logarithm of the dissociation constants,
pK-values, are not considered within the frame of this task since it is well
known that they do not influence the color of an indicator dye).

We note that the precision for measuring the €y.-value is * 20% relative
to the actual value and that maximum deviations for the wavelength, Apay,
can be taken as * 20 nm. In the light of this the values for €., and N\
are taken as approximate values which we shall characterize at first, by the
so called hard window approach, i.e. a membership value of 1 is assigned
to values within the uncertainty range of the given values and a membership
value of O is assigned elsewhere.

Table 1. Part of a database of pH-indicators

Compound Solubility pK €max Amax Color
in Water

1 Bromocresol green more or less high 4.66 35040 616.5 blue

2 Bromothymol blue very low 7.10 32400 616.5 blue

3 Thymol blue very low 8.90 4224 597.5 blue

4 Phenol red fow 7.81 37740 558.7 red
5 Bromocresol purple more or less low 6.12 63650 590 purple
6 Bromophenol blue low 3.85 67840 590 purple
7 m-Cresol purple low 8.3 9560 580 purple
8 Cresol red low 8.25 24378 572 purple

9 Xylenol blue low 8.8 16000 595 blue
10 Chlorophenol red very low 5.6 23280 575 orange
11 Bromocresol green  more or less low 4.66 16370 438 yellow
12 Bromothymol blue very low 7.10 16990 431 yellow
13 Thymol blue very low 8.90 2007 433.7 yellow
14 Phenol red low 7.81 16640 432 yellow
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As a first example the color of bromophenol blue (no. 6, Table 1) is
estimated by the reasoning scheme of equations (4) and (5). Table 2 reveals
the results of applying (4) (€m. is used as variable V| and A, for V).

Table 2. Resulits for estimating the color (spectrum)
of bromophenol blue (compound no. 6 in Table 1)

Compound § Poss(A;/A) Poss(B;/B) H;
1 1(1)? 1) 1
2 1(1) 1D 1
3 1(1) 0 (0.141) 1
4 1(1) 1) 1
5 0 (0.095) 0 (0) purple  (max [0.095, spectrum 5])
7 1(D 0 (0.25) 1
8 1 0 (0.81)
9 (D 0 (0.063)
10 1D 0 (0.563)

11 1) 1)
12 1Q) 1)
13 1(1) 1)
14 1) 1 Q)

—_ e

By applying equation. (5) we get as the final result D = {purple}.

In our database the color is not only given by a verbal expression but can
be considered a linguistic variable characterized by a fuzzy set. This fuzzy
set is based on the measurable visible spectrum as the membership function
renormed to the interval [0, 1]. Thus the approximate reasoning scheme allows
not only the retrieval of the most similar color name but can be also used to
derive the most possible electronic spectrum.

Reasoning at H; and D is then carried out at every position of the spectrum,
Y, i.e. F(y) and D(y).

If instead of using the crisp interval values to characterize our measurement
uncertainty we describe the uncertainty in measuring the €,,,-values with a
fuzzy set, i.e. "about = 20%" relative to the given €y.-value, the following
membership function can be assigned

mx;)=[1-clxy—al? 6)
where x; stands for €,,; the constant ¢ renorms the membership function to
the interval [0, 1] and is set to 1/(0.2 * 0.2); a represents the x; — value with

2 Data in parenthesis refer to the fuzzy case
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a membership value of 1 and the + sign denotes truncation of membership
values to O at negative values. Impreciseness for the wavelength, A« is taken
as "about = 20 nm" expressed by the same type of membership function as
in equation (6) with a constant ¢ = 1/(20 * 20).

The results of reasoning about the sought spectrum gives the bracketed
values in Table 2. The inferred spectrum for D compares very well with the
real spectrum of compound 6.

Searching for the spectrum of the alkaline form of bromocresol green
(no. 1 in Table 1) also retrieves a quite similar spectrum compared to the
real spectrum.

If one attempts to derive spectral information about the acidic forms of the
indicators (compounds 11-14) two alternatives are found for phenol red by
reasoning with the H;’s (cf. Table 3).

Table 3. Estimation of the spectrum of phenol red in its acidic form (compound no. 14 in Table 1)

Compound { Poss(A;/A) Poss(B)) D;

1 1 1 1

2 1 1 1

3 1 1 1

4 1 1 1

5 1 1 1

7 1 1 1

8 1 1 1

9 0.037 1 1
10 1 1 1
11 0.00 .09 max [0.09, spectrum 11]
12 0.01 0.0025 max [0.011, spectrum 12]
13 1 0.0072 1

Combining these alternatives by the minimum operator (equation [5])
reveals a spectrum that again is highly similar to the spectrum expected for
phenol red.

The reasoning method works well in all cases where similar compound
objects are present in the database. It may happen, however, that an attribute
is to be estimated at a position in the data space where no neighboring
compounds are available. As a consequence the inferred answer will be not too
close the real values and therefore, it is recommended to apply in such cases an
interpolation method based on fuzzy arithmetic as described elsewhere [12].

Sometimes the estimation of unknown properties may be imposible because
no correlation (dependency) does exist between the attributes. This is the
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situation, e.g. for the pK-value in the small database of Table 1. The acid
dissociation constants of the indicators can neither be correlated with optical
properties of the compound nor with their solubility in water. Applying the
reasoning mechanisms according to equation (4) and (5) would always infer
1 as the result for the sought attribute, i.e. nothing could be inferred. In such
situations additional chemical knowledge should be available in the database
to enable the attributes to be estimated by default reasoning.

3. Default reasoning about chemical properties

As an example we consider the estimation of the acid dissociation constants,
i.e. the pK-values.

A chemists’ reasoning would be as follows. All the compounds possess the
same functional acidic group, i.e. the phenol group. Although the pK-value of
pure phenol is exactly known to be 9.89 the dissociation constants of phenols
in general may range between pK-values of 3.5 and 11.5 depending on the
chemical environment, especially the number and kind of substituents and
the degree of conjugation in the molecule. If additional conjugation of the
phenolate anion occurs then the pK-value is expected to drop by about two
pK-units. Substituents will further change this value mainly in dependence
on their inductive effect and they either will increase the pK-value (higher
degree of dissociation) if they push electron density to the phenolate ion (+ 1
effect) or they will decrease the pK-value if they withdraw electron density
(- 1 effect).

Let us try to convert this knowledge into the approximate reasoning scheme.
Let V be a variable indicating the type of substituent. This variable takes its
values in the set of all acidic groups

X = {- phenol, - COOH, - OH, — SOsH, — NR*3...}.

The variable to be reasoned about, the pK value, will be denoted as U, takes
its value in the set of all pK-values, Y = [3.5, 11.5]. Consider the rule

If Vis A, then U is D, 7

The antecedent condition V is the "phenol” group is represented by V is A,
where Ay = {phenol}, A; = {- COOH} etc.
Given the data V is C the inferred value of U, U is F, is in analogy to
equation (4)
F(y) = Poss(A1/C)VDi(y) ®)
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In the case where C = {phenol} the inferred value is F(y) = D;(y) for every
y because the set A; being "not phenol” causes Poss(A;/C) = 0 and therefore
max [0, Di(y)] = Dy(y). On the other hand if C+ {phenol} we infer F(y) = 1,
i.e. nothing can be inferred about U.

The inferred value for D;(y) lies in the range between 3.5 and 11.5 pK-
values, Y, as already mentioned above. Therefore, the additional rules should
be considered in order to sharpen the up to now very unspecific result.

Additional conjugation in the molecule:

Reasoning about additional conjugation of the phenol group can be per-
formed by:

If Wis BwhenUis E ®

W is a variable indicating the appearance of additional conjugates that takes its
values in the set X’ = {1,0} where 1 indicates an "additional conjugation" and
0 indicates "no additional conjugation in the above B = {1}. The possibility
distribution for the set E is

E = {about 2 pK-units less than for the unconjugated phenols}.
With the data W is C the inferred value for U becomes U is G where
G(z) = Poss(B/C)VE(z) (10)
Considering the condition a default condition, in the sense that the effect

of conjugates is only typical, the general reasoning scheme can be formulated
as suggested [13]:

Hy = Poss(B/C)V((1 — Poss(E/F)VE)AF (1
The inferred value will be F if no additional conjugation of the phenol
group occurs since in that case C {additional conjugation}, Poss(B/C) = 1,

Red with (1 — Poss(E/F)) gives 1 independent on what (1 — Poss(E/F)) will
be and anded with F results in F.

In the case where is C = {additional conjugation}, the Poss(B/C) = 0,
(1 ~ Poss(E/F)) = 0 since Max,[E(y)AF(y)] = 1 (the sets E and F intersect)
and as the consequence the inferred value for Hy = E(y)AF(y). Thus, if
additional conjugation can be observed in the molecule then it is taken into
account by further specifying the possible range for the pK-value otherwise
the original pK-range will be preserved.

Inductive Effects:

The influence of substituents on the acidity of the phenol group is
formulated as a second default condition for inferring about the pK-value
of the indicator. Qualitatively, the inductive effect of different substituents
can be expressed, e.g. by Lucas’ series [14].
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(= I) NO, CN > SO, > COOH > C1 > Br > H > NHCOCH; > CH;3
> OCOCHjs. (+)

In the present database example only Br, CH; and R,HC are to be
considered as substituents for H.

Let Z be the variable taking its value in the set of all possible substituents
{NO,, CN, SO,...}. Then we define the rules

If Z is B; then U is E;
If Z is B, then U is E, (12)
If Zis B, then U is E,

In order to express the consequence U is E; for a certain substituent
B; we know at least for the substituents of interest that the substituent
Br decreases the pK-value compared to the unsubstituted phenol by about
1 pK-unit (- I-effect), and the substituents CH; and R,HC increase the
pK-units (+ I-effect). The uncertainty about the exact value is described by-
a membership function of the form

m(y) = [1 - (1/(0.5 * 0.5)) (y - b)I 13)
with b being the most possible y-value with m(y) = 1.

Table 4. Comparison of measured pK-values with inferred pK-values by default reasoning.

Compound No. Substituents measured pK-value inferred pK-value
1 4 Br, 2 CH;3 4.66 4.4
2 2 CHs, 2 RpHC, 2 Br 7.10 6.9
3 2 CHj, 2 R;HC 8.90 8.9
4 without (H) 7.81 79
5 2 Br, 2 CH3 6.12 6.4
6 4 Br 3.85 3.9
7 2 CH3 8.3 8.4
8 2 CH; 8.25 8.4
9 4 CHs 8.8 8.9

Thus reasoning about U is E; can be undertaken in the same way as with the
first default condition, i.e. one obtains with the data V is C for the inferred
value H;

H; = Poss(B,/C)V((1 — Poss (Ei/H;.))VE)AH: (14)
In this inference pattern the inferred value Hy for considering additional
conjugation in the system is taken into account as is the presence of several
equal or different substituents.

Table 4 gives the results for inferring the pK-values by our reasoning
scheme and compares them with the experimentally measured pK- values. The
agreement between measured and inferred pK-values is satisfactory and these
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values could be used as good approximation for solving different chemical
tasks.

We note that the reasoning system used is open to incorporate additional
rules for further specifying the knowledge about this chemical property.

Conclusion

Approximate reasoning can be considered a very promising tool for
manipulating chemical knowledge in knowledge-based systems. This is due
to its well established capabilities for handling uncertain and imprecise obser-
vations, its facility for handling linguistic quantifiers of chemical properties
and its ability to deal with partial matching of knowledge. More complicated
inference patterns can easily be constructed and also aggregation of different
rules could be carried out in a more sophisticated manner, e.g. by applying
the ordered weighted averaging (OWA)-operator [15].
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