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Harry WECHSLER!

Abstract

This paper addresses evolution and the Lamarckian hypothesis using
the framework of artificial worlds and evolutionary computation. The
Lamarckian hypothesis is specifically concerned with whether acquired
variations ("adaptations") can be inherited. Artificial worlds are large
scale artifacts and represent visualization means for simulating collective
behavior when analytical techniques break down. Analogies drawn from
natural selection, optimization, and machine intelligence are brought to
bear on the proper design of such artificial worlds. Artificial worlds
predict future behavior, check which properties are arbitrary and which
are not, and could possibly suggest means for preventing harmful
behaviors from emerging. New conjectures can be tested for and
the role that information plays in evolution and innovation can be
properly assessed. Qualitative arguments suggest an updated version
of the Lamarckian hypothesis involving knowledge transfer across
developmental life cycles.

Résumé

L’article traite de ’évolution et de I’hypothése lamarckienne dans le
cadre analytique des mondes artificiels et du calcul évolutionniste.
L’hypothese lamarckienne est une maniere de chercher a déterminer si les
variétés acquises (adaptations) peuvent étre transmises par le mécanisme
d’hérédité. Les mondes artificiels sont des artifices analytiques de
grande taille représentant un moyen de visualisation pour simuler le
comportement collectif lorsque I’emploi des techniques analytiques
s’avere impossible. Des analogies au processus de sélection naturelle,
d’optimisation et d’intelligence des machines sont employées dans la
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574 H. WECHSLER

conception de tels mondes artificiels. Ces mondes servent a prévoir des
comportements futurs, & vérifier quelles propriétés sont arbitraires et
celles qui ne les sont pas, et peuvent suggérer des moyens pour prévenir
P’apparition des actions endommageantes. Des nouvelles conjectures
peuvent ainsi &tre testées et le role que l'information joue dans
I’évolution et I'innovation peut mieux se saisir. Des arguments qualitatifs
suggerent une version adaptée de ’hypothese lamarckienne impliquant
de transfert de connaissances entre des phases des cycles de vie.

I. INTRODUCTION

We survey in this paper what artificial world simulations using evolutionary
computation, in general, and genetic algorithms in particular, can offer to
economics in terms of insights and/or predictive power regarding innovation
and emerging structures. The point of departure for our discussion is the
thesis advanced recently by Brian Arthur (1992) that "the standard mode of
theorizing assumed in economics is deductive — it assumes that human agents
derive their conclusions by logical processes from complete, consistent and
well-defined premises in a given problem using mostly static environments.
This works well in simple problems, but it breaks down beyond a "problem
complexity boundary" where human computational abilities are exceeded (?r
the assumptions of deductive rationality cannot be relied upon. Beyond this
problem complexity boundary, and despite problems becoming ill-defined,
humans still continue to reason well, but by using induction rather than
deduction.”

Rumelhart and McClelland (1986) advance a similar thesis when they
claim that "the time and space requirements of any cognitive theory are
important determinants of the theory’s plausibility. Complexity satisfaction
provides a major source of constraints on the solution of the problem.
Much of past analytical and theoretical work has tacitly assumed that
the language of continuous mathematics is equivalent to the language
of computation. Mathematical modeling, however, is not equiva.lcnt. to
computational modeling. There are still issues of representation, discretization,
sampling, numerical stability, and computational complexity (at least) to
contend with." To address these very issues, Simon (1982) has introduced a
normative science (of the artificial) concerned with optimal engineering design
and has defined the principle of bounded rationality, i.e., that people have
to accept "good-enough”, possible suboptimal but still satisfying solutiops,
because computationally there is no other choice. Bounded rationality
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belongs to imperative logic, the paradigm underlying procedural (behavioral)
rationality. Specifically, given a set of constraints and (fixed) parameters,
find those values of the implementation variables that maximize the utility
of the design. Brian Arthur would probably summarize the same arguments
concerning system design and analysis by suggesting that deductive rigor
needs to be replaced by "behavioral rigor based on precise and observed
actualities of human behavior."

Both the problem complexity boundary and the principle of bounded
rationality ask for complex simulations if the economists were to become
interested in pursuing behavioral rigor in terms of predictive power regarding
innovation and emerging structures. Artificial worlds (AW) (Lane, 1992),
computer simulated stochastic models consisting of agents that interact with
each other and with their natural environment in prespecified ways, are then
the only solution available to find real answers for real world situations. We
emphasize that there is nothing artificial about AW except the use of an
appropriate visualization medium for simulating the real world of economics.
Artificial worlds allow for evolving preferences and nonfixed utility functions
and they can be useful for simulating collective behavior. When analytical
tools are lacking, the case can be made that heretical conjectures along
with ortodox dogma should be allowed to compete and discharge questions
regarding equilibrium theory through the proper conceptualization of space
& time, information, and utility.

Artificial worlds are quite different from artificial intelligence (AI). As
we are going to encounter Al again it is worth now to define what it
usually means. Al involves achieving, explaining, and/or simulating problem
solving and decision making capabilities as those continuously exhibited by
human subjects in meeting the world surrounding them. Searl (1984) has
forcefully argued, however, against the idea of Al being able to duplicate
human intelligence on grounds of functionality and intensionality. Judgments
involving mathematical truths are not necessarily algorithmic and furthermore,
consciousness, intentionality, and insights are needed to comprehend the full
implication of truth statements (Penrose, 1989). Artificial worlds can provide
a true perspective on behavioral rigor using complex simulations based on
real assumptions, real interactions, and real consequences of specific behavior.

Terra firma for "intelligent” behavior in general, and economics, in
particular, involves by default information processing and knowledge transfer.
According to Marr (1982), the specific descriptive levels where tasks of
varying complexity have to be understood are those of strategy, process
(representation and algorithm), and mechanism (implementation). Basic
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computational theory, the first level, specifies the task, its appropriateness, and
the implementation strategy. Next, the representation and algorithm specify
the computational approach in terms of input and output representations,
and the corresponding transformations. Consequently, the task determines the
mixture of representations and algorithms, and a good match between the
three levels is highly desirable. Furthermore, according to Simon (1982), "all
mathematical derivation can be viewed simply as change of representation,
making evident what was previously true but obscure. This view can
be extended to all of problem solving — solving a problem then means
representing (transforming) it so as to make the solution transparent.”" In
other words, knowledge has to be made explicit if and when needed, and it
would be up to the artificial worlds to accomplish this very task.

The natural way for handling complex decision problems is through learning
and adaptation. Learning denotes systemic changes that are adaptive in the
sense that they improve system performance on future endeavor involving
tasks similar to those engaged in the past. We learn many times using
analogies, and the result is that we constantly update the representations
we hold on the world surrounding us. Knowledge acquisition is much
more than accruing facts and it involves also their purposeful (functional)
organization. Incremental learning and unlearning, adequate reinforcement
and how to learn from mistakes as much as from positive experience,
and credit (and critique) assignment are amongst the issues concerning
learning and adaptation. Supervised learning is nevertheless quite restricted
in its scope, and in fact, from a biological viewpoint, even less important
for success than the emergence of adequate representations. It is up to
the artificial worlds, however, to bring up discovery and innovation using
self-organization and evolutionary computation. It is within the context of
adaptation and evolutionary computation that we consider the Lamarckian
hypothesis and its plausibility for economical markets. The Lamarckian
hypothesis is specifically concerned with whether variations ("adaptations")
acquired during the lifetime of the phenotype ("agent") can be incorporated
in the genotype ('organization") and inherited later on through regular
mechanisms of heredity ("inheritance").

Artificial worlds hold much potential for addressing problems whose
solution would have great impact on modern economical theory. As an
example, we could test conventional economic theory based on the assumption
of diminishing returns vs. positive feedback whereby small chance ("chaotic")
events (and necessity) early on in the history of an industry or technology can
tilt the competitive balance (Brian Arthur, 1990). One should note that the
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thesis supporting positive feedback for the economy is selective in terms of
its applicability and that it appears to hold only for the high-tech, knowledge
intensive sector of the economy. Early superiority leading to selectional
advantage, an important ingredient for positive feedback, is also apparent
during genetic programming where it leads to premature convergence in terms
of fitness. It is the same knowledge factor that could make the Lamarckian
hypothesis respectable again. If the gene pool (genotype) consists, among
other things, of information, then inheritance of acquired characteristics
becomes possible because humans can transmit innovation represented in
terms of specific knowledge and experience through teaching and learning.
Another important issue for artificial worlds to decide upon is what is
the driving force behind innovation and novel economical organizational
structures. Can the tendency toward relatively stable states of equilibrium,
known as homeostatis, be held responsible for observed social and economical
behavior, or maybe we should subscribe to the heterostasis thesis advanced
by Kloft (1982), that "intelligence in complex systems is a concomitant
of a striving for a maximal condition, whereby agents "seek" excitation and
"avoid" inhibition." The change of paradigm, from homeostasis to heterostasis,
should be tested for, and the role of internal drives such as motivation in
general, and active search for innovation (novelty) by agents or entities, in
particular, be properly assessed.

II. SELECTION, OPTIMIZATION AND ADAPTATION

We explore natural selection, computational sciences, and machine
intelligence in order to draw analogies for how artificial worlds should be
simulated and assessed using evolution, optimization, and adaptation criteria.

11.1. Natural Evolution and Selection

The process of natural evolution leads to change as a result of adaptive
strategies being continuously tested for fitness by the environment as it should
be the case for closed-loop feedback control. Evolution simply assumes
selection ("survival of the fittest") but recent developments such as the
neutralist theory, to be described later on, paint a much more complex picture.
As it has been suggested by sociobiology, the agent and the environment
mold each other in their continuous interactions. Evolution is not necessarily
a smooth and continuous process. As an example, punctuated equilibrium
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describes evolution as a discontinuous process, where "revolutionary” change
might be the norm rather than the exception. Gould (1989) recounts the
events related to deciphering the Burgess shale, a limestone quarry rich in
life’s remnants after the Cambrian explosion, and concludes that there is no
predefined ladder of evolution and that if one were to "replay the tape a
million times and it is doubtful that anything like Homo sapiens would ever
evolve again." The punctuated equilibrium eliminates species by "lottery",’
even when evolution, driven by contingency and opportunism, thrives towards
increasing system complexity. Natural selection and the origin of species is
the outcome of both chance and necessity.

The discoveries made by Darwin and Wallace on the mechanisms of natural
selection, and by Mendel on genetics and inheritance, are fundamental to
evolutionary theory and population genetics and they have led to neo-
Darwinism or the synthetic theory. The next milestone was achieved by
Watson and Crick when they broke the genetic code and set up the basis
for the present explosion in molecular biology. Arguments on species,
their taxonomy, and on heredity, explain how complex organisms emerge
over space and time. Molecular genetics holds that inheritance of acquired
characteristics is not possible and that there is no basis for the Lamarckian
hypothesis.

The material basis for heredity is DNA, a ladder-like molecule whose
message is encoded using the "letters” (chemical bases) A, G, T, and C.
The message is read in triplets, the words are of two kinds, "stop" or
"aminoacid X", and twenty different amino acids are encoded by triplets.
The genetic message specifies sequences of amino acids terminated by stop
signs, and, when translated and properly expressed, the result is proteins,
which are chains of amino acids. Genes are sections of DNA which specify a
discrete amino acid chain. Chromosomes, are composed of genes, which may
take on some number of values called alleles. One can talk of a particular
gene, for example an animal’s eye color gene, its locus, position, and its
allele value, blue eyes (Goldberg, 1989). As a result of its interactions
with the environment, the genotype, the genetic package some prototype
organism ("entity") is endowed with, is expressed as some specific phenotype
("agent") following the development ("embriologic") stage. The genotype is
the blueprint for "solution" and the phenotype is its expressed instantiation.

According to Gregory (1987) selective mating and variation are held
responsible for natural selection (through the survival of the fittest) and they
ultimately lead to evolutionary change across the "genepool”. "Inheritance is
not blending: genes are passed unchanged from generation to generation once
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chromosomes pair off and random crossing-over takes place.” According to
the original theory espoused by Wallace, hereditary variations advantageous
in a changing environment will be selected, and the species will change to
remain in harmony (like constant numbers) with the environment. Variation,
measuring the degree of diversity and corresponding to internal entropy,
comes from the shuffling of genetic material taking place during crossing-
over, from hidden genetic variation, and from mutations ("mistakes") in
replication of DNA. It is assumed that mutations are rare and that most of
them cannot be passed on to the next generation. Selection can be thought
of as either eliminating variation (purifying, directional) or maintaining it
(balancing, stabilizing); and also as either promoting change (directional) or
maintaining the status quo (purifying, stabilizing).

Selection of the balancing type ensures that the norm maintained is that of
a polymorphic population. An alternative explanation is the "non-Darwinian”
proposal that the observed protein variants are selectively neutral; they confer
no real advantage or disadvantage and are maintained purely by chance,
or by random genetic drift. On this neutralist theory, harmless or even
slightly deleterious mutations may spread and become fixed (or eliminated)
purely by chance. As with natural selection, experiments show that genetic
drift occurs especially in small populations where biased samples are more
likely. "In essence, the neo-Darwinian theory expects that a given variation
is correlated with some environmental variable, and the neutralist theory
expects that it is not" (Gregory, 1987). Good things need to be taken in
moderation and selection makes no exception. Excessive selection can be
harmful too so genetics features such as diploidy (pairs of chromosomes)
and dominance shield alternate solution from extinction. Dominant genes
are always expressed (heterozygous or homozygous modes of reproduction)
while a recessive gene is only expressed when it shows up in the company of
another recessive (homozygous reproduction). Long-term memory expressed
as recessive allele combinations protects past experience and “permits
alternate solutions to be held in abeyance — shielded against overselection”
(Goldberg, 1989).

Natural selection modifies and preserves old species but this alone will
not produce new species ("structures"). Models for the origin of new
forms of life include (i) gradual adaptive divergence (Darwin) and/or
speciation possibly primed by gradual selective change within geographic
isolation (neo-Darwinism) and involving small populations, (ii) accidents
and macromutations (multiplication of chromosomes — polyploidy) involving
individuals rather than populations, and (iii) punctuated equilibrium or
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quantum speciation, an intermediate alternative, where no geographic isolation
is necessary, accident rather than natural selection is the cause, inbreeding
amongst descendants of a single individual is necessary, and a new species
may arise in a few generations with the establishment of a homozygous
population for mutation (Gregory, 1987). As the paleontologists generally
fail to find evidence of gradual transformation in the fossil record, punctuated
equilibrium is gaining increased respectability. "All" what it took to move
from chimpanzee to Homo Sapiens is a minute amount of chromosomal
change ("mutation™). One should find it normal then, that as the rate of
technological change and knowledge dissemination heats up (corresponding
to higher entropy), the rate at which new companies and forms of production
appear (and old ones disappear) should accelerate. Random mutations throw
up material on which selection acts; most offshoots perish and but a few
succeed as new species. Since the majority of inferred change in DNA is
(silent and) due to mutations, small populations should be frequent in the
history of species, since drift is more effective in small populations, and most
effective in inbreeding (Gregory, 1987).

Since silent substitutions in the DNA are more frequent than the non-
silent ones (with an effect on the phenotype) it appears that the majority of
evolutionary change is "immune" to natural selection. The effect of the large
neutral or "non-Darwinian" component discovered in molecular evolution is to
downgrade further the role of design and increase the role of chance (Gregory,
1987). Embryology and epigenetics need still to explain development or
the unfolding of form time after time using genetic blueprints. Control
genes, self-organization, and possible neo-Lamarckian modes of changes
have been suggested so far but none is yet conclusive and widely accepted.
It is commonly accepted that ontogeny, an individual organism’s embryonic
development, follows phylogeny, the evolution of the species. This law is
subject to exceptions, and there are cases suggesting an evolution in the
opposite direction. The evolution of the skull and the face in higher primates
and man seems to be one of those exceptions. It seems as if what is a
transitional stage in the ontogeny of other primates became a terminal stage
in man (Changeux, 1983). The mystery of transformation lies then at the
interface between genotype and its expression, the phenotype.

I1.2. Computational Sciences and Optimization

Optimization and evolution of successful design fit to survive competition,
and its intrinsic computational complexity, require sophisticated means for in-
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formation processing. Useful analogies come from population genetics, socio-
biology, operation research and probabilistic computation, simulated anneal-
ing and Boltzmann machines, and non-linear dynamical systems and chaos.

From population genetics comes the Fisher — Eigen fundamental theorem
(of natural selection) stating that the average fitness increases (proportional to
the variance of the fitness) (Hofbauer and Sigmund, 1988). It can be shown
that the theorem expresses a mixed evolutionary strategy that combines
mutation in terms of thermodynamic search (see simulated annealing below)
and selection (Boseniuk et al., 1987). (This theorem should be hedged,
however, with the comment made by Isaiah Berlin regarding the "fox that
knows many things, but the hedgehog knows one big thing. Foxes have
a diverse vision of life. They are skeptics, agnostics, tolerant, centrifugal.
Hedgehogs have a central, systematic vision of life. They are believers,
doers, committed, centripetal, often fanatical. Certain moments in history
allow foxes to prosper. They tend, however, to be rare.”

Sociobiology (Wilson, 1982) involves itself with the evolutionary interpre-
tation of behavior and draws much from ethology, cellular automata such as
the "game of life" using dynamical behaviors resulting from different initial
configurations (Cowan, 1982), and/or evolutionary social games (Axelrod,
1984). It interprets behavior in terms of strategies which could have selective
advantage when they increase the chance of survival of those sharing their
genes — altruism is one intriguing example of such behavior while dumping
and gaining market share would be another one. Among the issues that
come up we mention limited conflict ("competition") that benefits individual
individuals® ("agents”) as well as their species ('organizations") and are
characteristic of evolutionary stable strategies (ESS) (Maynard Smith, 1982),
growth rates and ecological models (Hofbauer and Sigmund, 1988) involving
the Lotka — Volterra equations tuned for different types of ecosystems such
as competition, symbiosis, and/or host ("prey") — parasites ("predator"). Co-
evolution of parasites has been shown to prevent genetic algorithms from
being trapped in local optima and to make testing for fitness more efficient
(Hillis, 1991). The benefits accruing from co-evolution are the result of two
independent gene pools striving to develop evolutionary stable strategies,
similar to the permanent flux alternating between epidemics and immunity.
The parasites are scored according to how well they find flaws in the host and
cannibalize it, while a host ("pray") is successful according to its ability to
starve the parasites. The question whether behavior is genetically determined
is highly controversial and it is reminiscent of old reductionism arguments
such as nature vs nurture and/or heredity vs. environment. Whether the tyranny
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of the genes should be held responsible for society’s evils or not has become
a legitimate and highly loaded issue. The Lamarckian hypothesis, if it were to
be true, would diminish the role of the genes and let some fresh air blow in.

Solutions for optimization problems are found using perturbations methods
and belong to operation research. Standard techniques include hill climbing
and greedy algorithms (vs. blind algorithms) along successful perturbations,
and branch and bound where search is aborted along those paths whose
estimated cost is higher than some a priori threshold. Hill climbing considers
all perturbations from some given current state and would choose the best one
as the next state configuration. Hill climbing, a local method whose horizons
are limited could possibly underlie the Lamarckian hypothesis. Problems (and
possible solutions) related to hill climbing and its inherent locality include
local maxima traps (backtrack), plateau where local comparisons are not
enough (big jumps/perturbations) and ridges (move in several directions at
once) (Rich and Knight, 1991).

Complexity analysis usually assumes worst case behavior. Optimization
solutions whose worst behavior is "good" are obviously the most desirable
ones. Due to finite resources in many instances one might also be satisfied
with solutions that on the average are well behaved. In fact, one might even
accept solutions that have a small likelihood for wrong answers. Computations
involving instructions that make random choices are called probabilistic. Most
probabilistic algorithms fall within two classes — Las Vegas and Monte Carlo.
Las Vegas algorithms never return an incorrect answer, but sometimes they
do not find an answer at all, while Monte Carlo algorithms always give an
answer, but the answer is not necessarily right. The probability for success
increases as the time available to perform random choices increases.

The motivation for random (and non-deterministic) moves using
probabilistic choice comes from thermodynamics. Simulated annealing
optimization, whose goal is to achieve increased complexity (higher entropy
states), proceeds along energy gradients characteristic of fitness landscapes.
For reasons involving search performance and to avoid being trapped in
local maxima, the process can be occasionally perturbed using non-optimal
moves that temporarily lead to lower energy states. Non-optimal moves
are accepted according to a control parameter labeled as "temperature",
and the higher the "temperature” the more likely it is that perturbations
of decreased fitness will be accepted. (Annealing done at zero temperature
corresponds to hill climbing and greedy algorithms.) Another paradigm, that
employing Boltzmann machines, facilitates deriving behavioral distributions
fit for some predetermined environment. If forced ("clamped") behavior at
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equilibrium fits the "free" run of the network structure then good match
between network organization and its environment results (Ackley et al.,
1985). As it has been already suggested, mixed strategies taking advantage of
individual development and built around life cycles can be quite beneficial.
During "childhood" exploration of alternative solutions is carried out using
simulated annealing performed at high temperatures, while during "maturity”,
the temperature is gradually reduced, stochastic search becomes feeble (so
unfavorable perturbations become less likely), and natural selection takes
over. The hybrid strategy, corresponding to competition and selection subject
to conservation of total population, yields better results than pure simulated
annealing for problems such as the Travel Salesman Problem (TSP) (Boseniuk
and Ebeling, 1988).

What about predicting or forecasting phenomena whose behavior is
modeled by non-linear dynamical systems, and starting from some initial
conditions? If everything was predictable from the very beginning, this would
be a large blow to the very notion of free will. Sensitive dependence on initial
conditions makes it impossible to make long term predictions because non-
linear dynamical systems separate initially closed in space/time trajectories
exponentially fast. The effect, known as the "butterfly effect", provides access
to novel behavior. Nonlinearity is necessary but not sufficient to make
dynamical systems unpredictable. The unpredictability is due to random
elements, and the corresponding fluctuations and the resulting behavior is
known as chaos. Chaotic behavior prevents us from associating cause and
effect. Still, chaos is deterministic, and it can result from rules where chance
does not play any role. Chaos can organize randomness and impose structure
where none would be available otherwise.

Self-organization, to be encountered later on in the context of neural system
assemblies, is complementary to selection and has the potential to enhance the
scope of evolution by increasing the intrinsic complexity across individual
agents. Kaufmann (1991) and others have suggested that adaptation takes
place at the boundary between order and chaos and that evolution propels
complex adaptive systems towards that very boundary. Phase transitions
are well known in physics for leading to qualitative behavioral changes;
transitions from order to randomness could play a similar role for evolutionary
change in terms of information contents. Self-organization manifests itself also
as self-organized criticality (Bak et al., 1988), which is characteristic of critical
states whereby minor events hold the potential for starting chain reactions
("avalanches") and strike thus disaster ("black Mondays") for complex systems
such as economic markets. Some connection between chaos and self-organized
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criticality comes through the (I/f) flicker noise characteristic of a system
whose dynamics are influenced by past events and of fractal (self-replicating)
behavior.

IL.3. Machine Intelligence and Learning

An important distinction needs to be made between those situations where
the optimal response is known and where learning then amounts to the
system merely being able to reproduce it, vs. those situations where the
optimal response has yet to be identified. Supervised learning with a teacher
corresponds to the first case, while self- organization, i.e., unsupervised
learning, corresponds to the latter case. Supervised learning, characteristic
of error-correction strategies, seeks system equilibrium through negative
feedback, and corresponds to homeostasis as defined earlier. Self-organization,
characteristic of processes involving (novelty) discovery using extreme-
searching strategies, is much more important for evolution, and corresponds
to heterostasis.

Selection presumes categorization and categorization allows for adaptation
within some given environment. Categorization methodology covers many
approaches, ranging from essentialism to polymorphism, and it entails usually
several (4 to 6) layers of hierarchical taxonomy. "The selective point of view
maintains that anatomical variability is unavoidable from a developmental
point of view and, moreover, is essential to the functioning of the system —
for variability provides the substrate upon which selection acts. The nervous
system probably continues to generate functional variability throughout the
lifetime of the organism. Neuronal groups exemplify another main principle of
neuronal group selection, that of degeneracy. Degeneracy endows the nervous
system with a great deal of combinatorial richness and allows selection to
guide the evolution of the network through the adaptive landscape" (Reeke et
al., 1990). Degeneracy goes beyond recessive genes, phenotype changes are
occurring, and a revised Lamarckian hypothesis for economics concerned
with inheriting successful ("neural") assemblies of ideas and innovation
becomes possible. As it has been the case with the polymorphic approach for
categorization, the case can also be made for a manifold of solutions, and the
overall design is that of distributed "computation” (information processing)
and adaptation.

The very existence of the nervous system, a higher qualitative stage of
development on the evolutionary scale, suggests that nature, aware of its
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shortcomings, like lacking the ability to forecast future contingencies, has
also allowed for the possibility of reactive planning and control (using
adaptation, selection and synaptic plasticity) for when the need shall arise.
Learning and adaptation can still be primed across eons through prewired
drives and thus reflect innate, evolutionarily determined behavioral biases.
For animals, de novo synthesis of new responses is critical for survival
(Reeke et al., 1990). Tabula rasa learning, "model-free" estimation, is slow
to converge and requires prohibitively large training sets in order to reduce
the variance contribution. The only way to control the variance in complex
inference problems is to use model-based estimation, which is biased-prone
(Geman et al., 1992). The tradeoffs between bias and variance are well known
and can be thought also in terms of variations of interpolate vs. extrapolate
schemes. The means to overcome this dilemma and the limitations it imposes
on performance should involve some limited bias suggested as boundary
conditions by the genotype. Also characteristic of the nervous system is
the high degree of reentry, whereby dynamic and integrative processes tie
together seemingly independent processes. It is within this very context that
the Lamarckian hypothesis becomes plausible as an example of evolutionary
change. Rational beings ("organizations") in charge of their "own" fate have
to innovate continuously in order to survive and the way to do that, usually
within a short span of time, is by using hill climbing methods and analogical
reasoning. Major breakthroughs or "paradigm" shifts, such as the industrial
revolution or the advent of the information age, are quite rare and they
correspond conceptually to punctuated equilibrium as described earlier.

Artificial * intelligence (AI) (Winston, 1992), connectionism ("neural
networks") learning (Hertz et al., 1991), and their hybrids, are characteristic
for machine intelligence and learning. The background for adaptation comes
from symbolic (Weiss and Kulikowski, 1991) and fuzzy logic (Klir and Folger,
1988), statistics and estimation, control, and information theory. Connectionist
learning (Rumelhart and McClelland, 1986; Anderson et al., 1988 and 1990) is
particularly suited to handle analytical tasks involving numerical information
but too complex to render themselves to closed form solution. Collective be-
havior takes the form of distributed and hierarchical computation and, by using
realistic assumptions, it can simulate basic tasks such as functional approxima-
tion, (stimulus-response) mappings and generalization tasks, and competitive
and reinforcement learning. Performance evaluation in terms of accuracy and
efficiency, compactness of representations using entropy concepts, capability
to generalize beyond given training sets, and incremental learning and forget-
ting are basic for assessing amongst the different techniques proposed so far.
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III. EVOLUTIONARY COMPUTATION AND GENETIC
ALGORITHMS

Evolutionary computation mimics what nature has done all along and
it does that using similar principles. There are three basic classes of
evolutionary algorithms and they involve genetic algorithms (Holland, 1975)
using Mendelian genetics, Darwinian algorithms using mutation/selection
dynamics (Rechenberg, 1973; Edelman, 1987), and replicator (differential)
equations based on the Fisher — Eigen theorem. Evolutionary computation is
characteristic of "weak" Al methods, and it is usually used when a strong
domain theory is lacking. It is obvious that further crafting of such methods
using specific domain knowledge can only improve their performance. We
briefly survey below evolutionary computation and consider some of the
major issues involved in.

The class of genetic algorithms includes adaptation, optimization and
selection techniques that maintain a constant-sized population of candidate
solutions, known as individuals. The initial seed population can be chosen
randomly or on the basis of heuristics, if those are available for a given
application. The number of offsprings for some candidate solution is
proportional to its fitness relative to the rest of population. The power
of a genetic algorithm lies in its ability to explore and exploit, in a highly
efficient manner, information about a large number of individual solutions.
Candidate solutions are encoded using either binary notation, for simplicity,
or real numbers. The search underlying GAs is such that breadth and depth
are balanced according to observed fitness. By allocating more reproductive
occurrences ('chances") to above average individuals, the overall effect is to
increase the population’s average fitness. New individuals are created using
mostly two genetic operators known as crossover and mutation. Crossover
operates by selecting a random location in the genetic string of the parents
(crossover point) and concatenating the initial segment of one parent with
the final segment of the other parent to create a new child. A second child is
simultaneously generated using the remaining segments of the two parents.
Mutation provides for occasional disturbances in offspring by inverting "bits"
if binary encoding are employed or by slightly altering one or more genetic
elements using random fluctuations (from some normal distribution) during
reproduction if real numbers are used. Mutation ensures diversity for genetic
strings over the long haul and it thus prevents stagnation in the evolution of
optimal solutions. Note that performance of GAs is improved if Monte Carlo
methods are used to evaluate fitness, and that the class of GAs belongs to
simulated annealing when the population size is one.
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Some of the major problems affecting genetic algorithms and their possible
solution include poor fitness scaling possibly compensated by ranking, and
slow convergence and premature convergence possibly overcome by parallel
runs of the algorithm. Specifically, Muhlenbein and Kindermann (1989)
have used parallel genetic algorithms for combinatorial optimization whereby
selection is done locally in a neighborhood and each individual (phenotype) is
active (rather than passive) using hill climbing ("Lamarckian adaptation") so
recombination is eventually performed in the space of genotypes representing
a local fitness maxima. The conclusions drawn suggest that premature
convergence can be avoided, that "evolution with small isolated groups
of individuals and migration is faster than in large (nonhomogeneous)
populations with random mating", that "local inbreeding within a species
has extremely important evolutionary consequences, too close inbreeding
leads merely to extinction, and some crossbreedings is favorable but not
too much", and, relevant to the Lamarckian hypothesis, that "genotype and
phenotype learning seem to be equally powerful, but genetically specified a
priori conditions give individuals a head start in solving complex problems."
The observer affects the measurement by the very process of measurement — if
parallel competitive and reinforcement schemes of evolution are considered
there appears to be support for the Lamarckian hypothesis. There is also
support for the fact that a population having spatial structure, restricted
mating rules and increased selective pressure, yields more diversity and
"percolates” faster than a random but less robust ("panmictic”) population.
The explanation is that "the creative forces of evolution take place at mi gration
and few generations afterwards." One can expand on migration using diffusion
processes in order to further improve fitness.

Another aspect bearing on genetic algorithms is related to their internal
structure and credit assignment. Individual solutions are ranked once fitness is
measured but the question still begs as to whom the merit (or blame) should
be assigned. The degree of dependency between genes, known as epistasis, is
the major factor affecting credit assignment, and has led to many alometric
studies. High epistasis, characteristic of polygeny, makes credit assignment
difficult, and allows for "bad" mutations to survive as "hitchhikers" due to their
location being adjacent to that of "successful" genes. The credit assignment
problem for classifier systems has been approached using the bucket brigade
algorithm (Holland, 1975). The algorithm operates in analogy to economical
markets where goods ("genetic material") are bid and exchanged by traders
between manufacturers (environment) and consumers (Goldberg, 1989). It
has been pointed out that "when there are epistatic fitness interactions, sexual
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reproduction can actually slow down evolutionary progress by breaking up
co-adapted groups of genes" (Maynard-Smith, 1982).

Epistasis is closely related to representations. For representations exhibiting
low epistasis "greedy" (hill climbing) algorithms should be more appropriate,
while for high epistasis "random" algorithms are best. The Lamarckian model
has been suggested by Davidor (1991) for possibly coping with epistasis, as
defined above, by estimating the degree of co-adaptation between adjacent
elements. The Lamarckian hypothesis, using the Al jargon, achieves sub-
goal reward through the usual hill climbing method where "local" errors
are estimated and regions that require further co-adaptation are identified. If
epistasis is high, the question still begs on how to infer actual performance
using only local estimates. One could possibly conjecture that the Lamarckian
hypothesis operates then at the level of small island populations and precedes
migration and major selection.

Darwinian algorithms, known also as evolutionary systems (ES), are
described as (a/ b,c) and/or (a/ b+c), where a is the number of parents
during some generation ("cycle"), b is referred to as the "mixing" number
(if two parents mix their genes b=2), and c¢ is the number of children.
Selection is deterministic (vs. random for GAs) and is done so only the
a best of the individuals are allowed to produce offspring. A comma ","
indicates that parents are not included in the selection ("pure strategy") and it
is appropriate for dynamical and noisy situations, while a "+" indicates that
parents are included ("elitist strategy"). The range of mutation ("stepsize") is
not fixed, but inherited, and it will be tuned by the evolution process itself
(Muhlenbein and Kindermann, 1989). For Darwinian algorithms, mutation
is more important than crossover because once the population starts to
converge what is needed is minor tuning rather than major changes likely to
destroy the solutions derived so far. Mutation is also more effective in small
population and as a consequence parallel algorithms are especially suited for

the Darwinian algorithms.

Specific questions have been raised about what the genetic architectures and
strategies should look like. As it seems to be the case for the nervous system,
Muhlenbein and Kindermann (1989) consider two conflicting viewpoints, one
suggesting that higher functions are emergent properties of flat but highly
connected networks, and the other proposing that higher functions result
from specific substructures and connections genetically determined. "For
fixed environments there is a clear disadvantage for large flat organizations.
However, if the environment were to change radically, then these architectures
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would have an advantage because they are capable of mutating quickly into
large hierarchical structures."

IV. THE LAMARCKIAN HYPOTHESIS REVISITED

The Lamarckian hypothesis becomes an alternative to reckon with only
if it is possible to pass on to future generations information acquired
through phenotypical adaptation. Heterostatic behavior at the phenotype
level, characteristic of agents seeking explicit information within the confines
imposed by the genetic pool, can be easily implemented using hill climbing
fit for a particular problem domain. While it is obvious that inheritance
imposes specific bounds on behavior, it is also clear from ethology that
such bounds may be wide open to allow for adaptation (Gould, 1982)
because time and memory are limited. As it has originally been suggested by
Lorenz the genotype determines patterns of growth subject to the modifying
effects of experience (Muhlenbein and Kinderman, 1989). 1t is also obvious
that the effects of such experience have to be encoded somehow and as
a consequence it should not take a great leap of faith to subscribe to the
notion that informative coding can be passed on. Based on the "fossil" record
(coming from paleontology or from cases of failed industries) the case could
also be made that the Lamarckian hypothesis provides means for testing
different phenotypes before closing on genotype solutions, and it helps thus
with preparing the code for higher, yet to emerge, structures.

Some discussion should clarify in conceptual terms the usefulness of the
Lamarckian hypothesis for genetic algorithms (GAs) and how to implement
it. As for most GAs crossover reproduction and mutations are random,
the potential for decrease in fitness is high due to epistasis. While natural
evolution appears to be irreversible the same case does not hold necessarily
for economical performance. Hill climbing using local error estimates in
fitness as feedback control should be in principle able to locate genetic
substrings prone for further improvement without disrupting those substrings
already adapted. In terms of development and life cycles, the Lamarckian
hypothesis could be exercised as an option at the stage when the genotype
is expressed and it assumes its own identity (epigenetics) and/or during the
early stages of development ("youth"). It is the expression of the genotype
and the elements bearing on such expression that could be possibly affected
by Lamarckian factors. Much innovation can be achieved by new and usually
small companies; mutations are frequent while the incentive for reproduction
(spinoffs) is almost non-existent. For mature companies the reverse holds
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true, mutations are seldom while reproduction (selection) occurs frequently.
Another possibility to account for the Lamarckian hypothesis would be that
acquired characteristics are passed on to the next evolutionary level rather
than to the same level the agent belongs to. Structural changes taking place
could be possibly passed onto the more advanced but surviving phylum; as an
example, transitions from the soon to be extinct dinosaurs were passed on to
the birds. Finally, another possibility to contend with is that the Lamarckian
hypothesis operates at the level of ecosystems and that the medium of
exchange, that of knowledge, is now changing at ever increasing speeds, and
the inherent limitations characteristic of hill climbing can be overcome.

V. CONCLUSIONS

This paper provides a perspective on the Lamarckian hypothesis using
artificial worlds and evolutionary computation. Artificial worlds are large
scale artifacts useful to simulate and visualize collective behavior. The goal

of simulation is to both predict future behavior and to possibly prevent it

from emerging if deemed harmful. New conjectures can be tested for and
the role that information plays in evolution and innovation can be properly
assessed. Instead of exploring merely how markets work, artificial worlds
can probe why the markets are the way they are and how would they
possibly evolve in the future. Topics of particular interest for simulation
studies, beside the Lamarckian hypothesis, include positive feedback, how
individual rationality is molded by the rules of the games into aggregate
rationality, top-down vs bottom-up strategies, recombination (high diversity
but an expensive proposition) vs. asexual reproduction (fast proliferation of
offspring), government intervention vs. laissez faire. Qualitative arguments
seem to suggest that factors such as knowledge transfer, hierarchical structures
and development life cycles involving hybrid ("genotype" and "phenotype")
learning could possibly support some modern version of the Lamarckian

hypothesis.
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APPRENTISSAGE, TEMPS HISTORIQUE
ET EVOLUTION ECONOMIQUE

Bernard ANCORI!

Résumé
Une formalisation adéquate de I’état et la dynamique d’un systéme
économique complexe, défini dans les catégories de I'information et

de la communication permet de conférer a I’évolution économique
les principales caractéristiques du temps historique : contingence,
accumulation en une mémoire constructiviste pour laquelle 1’oubli, loin
de se réduire a une perte d’information, joue un role structurant.

Abstract .

The state and the dynamics of a complex economic system, expressed
in terms of information and communication, endow economic evolution
with the main features of historical time. Contingencies, irreversibility
and cumulative forces create an active memory in which forgetfulness is
not reducible to a pure loss of information and fulfils a structural role.

Les entités que nous avons [’habitude de désigner globalement par
Iexpression d’« agents économiques individuels » possedent en réalité une
triple dimension : ce sont d’abord des individus, considérés sous I’angle
des motivations indivisibles et singulieres de leurs décisions ; ce sont
ensuite des sujets, qui agissent souverainement a l’intérieur d’espaces que
leur ménagent diverses contraintes et sont responsables des conséquences
de ces mémes décisions ; ce sont enfin des personnes, qui renferment
I’ensemble organisé de pratiques et d’attitudes conférant intériorité et unité
a ces individus-sujets. Individu, sujet, personne : la réunion de ces trois
dimensions est le produit d’une trés longue évolution historique qui détermine
simultanément [’apparition du concept d’agent économique (L. Dumont,
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