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EVOLUTION AND FORWARD INDUCTION IN GAME THEORY

Gistle UMBHAUER'

Abstract

Forward induction criteria require perfectly rational players and common
knowledge of the structure of the game. Selection-mutation processes, in
contrast, work with players who undergo random shocks, have a limited
rationality and a limited information on the structure of the game, which
is repeated many times. Yet both lead to a similar equilibrium selection.
This paper goes into this result, and thereby tackles the interface between
rationality and evolution.

Résumé

L’emploi de criteres d’induction projective en théorie des jeux nécessite
des acteurs parfaitement rationnels, pour qui la structure du jeu est
connaissance commune. Les critéres de type sélection-mutation, au
contraire, reposent sur des hypotheses de rationalité ou d’information
limitées ; les acteurs, myopes et soumis a des chocs aléatoires, n’ont
qu’une connaissance partielle du jeu, supposé répété un grand nombre
de fois. Malgré ces divergences, les deux types de critéres conduisent
2 une sélection similaire d’équilibres. L’article analyse ce résultat et
aborde ainsi les connexions entre rationalité et évolution.

I. INTRODUCTION

Rationality can arise from the evolution of a society, whose individuals have
a limited rationality. This is not a new idea, it is perhaps even commonplace.
Yet it is still troubling, especially when it leads to a connexion between two
new topics in game theory, both developed over the last decade, which have,
at first sight, no common points: forward induction and selection-mutation
processes.
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614 G. UMBHAUER

So, on the one hand, forward induction relies on the common knowledge
of the structure of the game and on (perfectly) rational players, who are
able to infer all the information conveyed by a sequence of past actions. On
the other hand, selection-mutation processes tackle games where the players
have a limited rationality, undergo random shocks that lead them to an erratic
behavior, and have only a partial information on the structure of the game.

Yet, oddly enough, these strongly different topics lead, in many games, to
a convergent equilibrium selection. This striking fact calls for a more detailed
examination. Indeed, if convergence proves to occur not only in very specific
examples, then the study backs the claim that rationality-based criteria can
be used in not perfectly rational contexts.

Hence we are led to tackle the interface between, evolution and rationality.
We do not intend to be exhaustive: the paper is just an introduction, aimed to
encourage further study. So, we begin, in section 2, by briefly presenting the
most salient features of forward induction and selection-mutation processes.
Next, in section 3, we expand some examples which stress the nature of the
convergence. The latter is discussed in detail in section 4. We conclude, in
section 5, on the notion of learning, which is behind the behavior evolution
of not perfectly rational individuals.

II. FORWARD INDUCTION AND SELECTION-MUTATION
PROCESSES

The purpose of this section is not to survey the numerous papers on forward
induction (see Kohlberg, 1989, Umbhauer, 1991 b, Van Damme, 1990) and
evolution processes (see, for a partial study, Maynard Smith, 1982, Hofbauer
& Sigmund, 1988). We only stress the features of both topics, which help
to work out the convergence.

In short, forward induction requires that each player, when playing, takes
into account all the information conveyed by the past observed actions, which
are, as far as possible, supposed to be rational.

The main feature of forward induction is that it moves away from the notion
of momentary insanity (see Selten, 1975), which underlies the backward
induction principle, that is behind the still most employed equilibrium
concepts (e.g. Perfect Equilibrium (Selten, 1975), Sequential Equilibrium
(Kreps & Wilson, 1982)). According to the backward induction principle a
past deviation (i.e. a past out of equilibrium action) is always viewed as a
temporary error, which never affects the future behavior of the player. In
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other terms, errors are supposed to be not correlated in time, and, as a result,
deviations are never strategic. In contrast, forward induction, by expecting
each action to be rational, allows deviations to be strategic. Now a deviation
can convey meaningful information; it may sighal something on the nature
of the deviator and his future behavior, causing the other players fo act
accordingly. It follows that a deviation can be fruitful for the deviator, the
result being that some (backward induction) equilibria do not stand up to
forward induction.

Yet forward induction is not a precise concept. This justifies the existence
of a huge number of criteria which try to capture it. Very roughly, they
fall into three classes. The first one (rather mathematical) is an attempt to
construct, ex nihilo, new equilibrium concepts, on the basis of a certain
number of requirements, among others, forward induction; the Stable Set
concept (Kohlberg & Mertens, 1986), is the well knownst (and forerunner)
criterion of this class. The two other classes adopt a more interpretative
way of doing. The idea is to refine existing equilibrium comcepts (Perfect
Equilibrium, Sequential Equilibrium...) with the aid of forward induction.
Yet the two classes differ in their way of interpreting the out of equilibrium
actions. One class (see Banks & Sobel, 1987; Cho, 1987; Cho & Kreps,
1987; Grossman & Perry, 1986; Kohlberg, 1989) looks for the meaning of
out of equilibrium actions, without calling in question the meaning of the
equilibrium ones (this features is also implicit in Kohlberg & Mertens, 1986).
The other one (see Mailath, Okuno-Fujiwara & Postlewaite, 1993; 1991 @),
in contrast, puts forth the idea that, if playing an out of equilibrium action
conveys a signal, then not playing it may also convey a signal, which can
be different from the planned one. It follows that a signal, to be meaningful,
has to be consistent with all its implications (even on equilibrium actions),
causing equilibria to only be dismissed by other equilibria. This last class
will be the closest to the selection-mutation processes.

We do not aim, in this short paper, to retrace the history of evolution
processes, all the more we are mainly interested in the latest in date, i.e. the
selection-mutation processes. What matters is that the contexts, which gave
rise to the evolution processes, are biological populations, whose individuals
are not rational at all. Yet the study of the evolution of these populations points
out the survivance of the fittest (and only them). So, even if no individual
is rational, even if nobody solves a conscious optimization problem, all
happens as if the individuals were rational. Of course, in (very over-simplified)
biological societies, the solution of the puzzie is that fitter individuals have
a higher reproduction rate. Hence, if the offspring is identical to the parents,




616 G. UMBHAUER

the fittest individuals will, over the long run, displace the less fit ones (for
more sophisticated evolutions, see Hofbauer & Sigmund, 1988).

Game contexts are of course not biological ones. Yet the biological models
bore fruits: the most important one is the idea that a strategy, which leads to
a high payoff today, should be played more often tomorrow. This idea, which
stems from the higher reproductive rate of fitter individuals, underlies the
selection processes. It makes only sense if the game is played a lot of (infinite
number of) times, and if players have a limited rationality. Indeed, it supposes
short-sightedness, as players switch fomorrow to today best replies, without
taking into account that tomorrow’s state of play, due to the switches, will
differ from today’s one.

The well-knownst dynamical equations that are in accordance with a
selection process are the replicator equations. According to these equations,
the probability of playing a pure strategy grows (decreases) continuously in
time, if the payoff it ensures is higher (lower) than the mean one. Other
dynamical systems have been analysed (see Friedman, 1992 for a survey).

We recall the systems proposed by Samuelson (1991) and Young (1993),
as we will go back to them later on.

Samuelson (1991) is interested in a smooth adaptation system, in which
each player, from period ¢ to period 741, does not move with probability
close to one, and switches to the today best reply with the complementary
probability.

Young (1993) (see also Canning, 1992) studies a selection process, where
the players’ memory exceeds one period. Hence a player switches to the best
reply to a history of states (of play). What is more, Young (1993) supposes that
each player switches to the best reply to a sample of k states, drawn from the
set of the last m states; (k/m) denotes the player’s information incompletness.

All selection processes share a common point: the state to which they lead
over the long run strongly depends on the initial state of play. Following
common practice we call absorbing sets the smallest sets of states of which
the process can not break out, once it is at one of these states. We call basin of
attraction of an absorbing set, the set of states such as the selection process,
when being at these states, leads with probability one to the absorbing set
(see Samuelson, 1991 for more details). Thus, in other terms, the (over the
long run) observed absorbing set strongly depends on the initial state of play.
It follows that there is no room for an innovative behavior.

In order to allow more innovation in the players’ actions, mutation processes
are added to selection processes. Introduced in the late 1980’s (see Foster
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& Young, 1990; Kandori, Mailath & Rob, 1993; Samuelson, 1991: You
1993), a mutation process leads each player, when playing, to act’ Wit}?g’
small but strictly positive probability, in accordance with a random ,processa
The way in which the mutation process is added to the selection process.
(after or simultaneously) does not matter (see e.g. Samuelson, 1991 and
Young, 1993 for two different ways). What matters is that the support of the
random process is the whole player’s strategies’ set, causing every action to
be played with a strictly positive probability.

S.tated technically, thanks to the mutation process, there are only strictly
positive probabilities in the transition matrix (from one period’s states of play
to the following period’s ones). As a result, there exists a unique stationary
probability distribution over the strategies, which does not depend on the
initial state of play. More precisely, Samuelson (1991) and Young (1993)
establish that the absorbing sets that will be observed (with a probability
significantly different from 0) over the long run, have the following property:
the sum of mutations needed to reach their basin of attraction, from every
other absorbing set, is minimal.

To throw light on this result (due mainly to Freidlin & Wentzell, 1984) we
give the intuition behind it (largely out of Foster & Young, 1990’s paper).
An essential feature of the mutation process is that mutations, which act like
pel.rturbations, can cumulate. More precisely, the study of the stability of rest
points in deterministic dynamical systems introduces random shocks whose
effects do not interfere. In contrast, the mutation process generates a Sequence
of perturbations, the impact of one perturbation being not necessarily ended
when a new perturbation appears. Hence the effects of the perturbations can
cumulate, which allows fo cross the frontiers between the basins of attraction
(all frontiers can be crossed because of the full support of the mutation
process). This explains why there exists a unique stationary probability
distribution and why it does not depend on the initial state of play. Yet some
crossings are more difficult than others, in that they require more mutations.
As the probability of a sequence of mutations is an exponential decreasing
function of the number of mutations involved, the easily reachable absorbing
sets will be observed more often over the long run than the others. Samuelson
1991 and Young, 1993’s result follows. ’

HI. EXAMPLES

. We expand 3 examples, which will illustrate most of the comments given
in section 4.
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For a start, look at the game depicted in figure 1.

There are two Sequential Equilibrium paths' E, and E, characterized by:

E,: player 1 plays m; regardless of type and player 2 plays r, after m,.

E,: player 1 plays m, regardless of type and player 2 plays r, after ms.

Only E, is a Consistent Forward Induction Equilibrium Path (CFIEP
hereafter, see Umbhauer (1991 «)), that is to say a forward induction criterion
based on the notion of consistent signal. Its associated set of outcomes
(to simplify we call it also E;) is the only Stable Set (i.e. Kohlberg &
Mertens’s, 1986 mathematical forward induction criterion). At last, E, is the
only absorbing set, which is observed over the long run (with probability
close to one), when applying a selection-mutation process (Samuelson, 1991
and Young, 1993).

We refer to the authors for greater details on the different criteria. Here
we only stress the points which will allow us to yield some insights into the
reasons of the convergence in equilibrium selection.

So E;’s outcome is not Stable? because, if f,, due to the perturbations,
deviates more to m, than ¢, then player 2 is a priori incited to play r,
after m,. To prevent this (E; upsetting) response, #; should deviate more than
is expected by the perturbations. But, to do this, he should be indifferent
between m; (which ensures him a payoff equal to 2) and m,, which is clearly
impossible.

2.0 (0.1)

r
my mp
. ,
| t410.5 :\2\
.1 % 1 NREANEI N

|

2005 E/'/
/ my 1 my \

0.0 2 "2\ 2.2

Figure 1. It is a signaling game. Player 1 can be of two types, t; and t;; his type is drawn randomly
according to an a priori probability distribution (0.5 for each type), which is common knowledge
of player 1 and player 2. Player 1 knows his type when playing. he chooses a message, m; or mj.
Player 2 observes the message, but not the type (hence the information sets (dashed lines)), and then
chooses a response, r; or ra. The game ends with this action. The payoffs are given in the column
vectors (the first (second) coordinate is player 1 (2)'s payoff).
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‘E; is not a CFIEP because of the system of beliefs that assigns m; to both
types with the a priori probabilities. Indeed it leads player 2 to play r, after
my. As a result, # is incited to play m,, causing player 2 to assign m, to
t; and hence to play r, after m; (he still plays r, after m,). It follows that
t1 plays m, too, which validates the system of beliefs. Hence E, is upset
(it is displaced by E,).

E; is upset by the selection-mutation processes, in that one mutation is
enough for reaching E,’s basin of attraction, when starting in E,’s absorbing
set, the converse being false. Indeed look at the (limit) E, Sequential
Equilibrium, in which player 2 plays r, after m, with probability 1/2. Introduce
one mutation, one more agent of player 23 playing r, after m,. It sets off a
selection process, which is similar to the process involved by the above CFIEP
system of beliefs, and which leads to E,’s absorbing set. This process is: f,
switches to m;, player 2 plays r, after m, and m;, and ¢, finally plays m,.

Now look at he game depicted in figure 2.

(0.0)
r
(0.5.1) m 1. mz /i 2,1
11058 - )
2; 3N (4,9
t2/0.5 Ly, 00
(0.5.1) (1.3)

Figure 2. Similar to figure I's legend.

Consider the Sequential Equilibrium paths, E; and E,, characterized by:

E;: player 1 plays m; regardless of type.

Ey: player 1 plays m, regardless of type, and player 2 plays r, after m,.

E; (s outcome) is Stable; in contrast, E; is not a CFIEP and it does not
stand up to a selection-mutation process.

E; is Stable in that small perturbations can not upset it. Indeed, if the
perturbations are such as #, deviates more to m, than t,, then player 2 plays
ry after my, which supports E,. In the other case, player 2 is incited to play r;
after m,. To prevent this (E; upsetting) response, #; has to deviate more than
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is required by the perturbations; to do this, he has to be indifferent between
m; and m,, which is possible.

E,; is not a CFIEP because of the system of beliefs that assigns m to
both types with the a priori probabilities. This system leads player 2 to play
r, after my, causing both types of player 1 to play my, which validates the
system. Hence E; is upset (it is displaced by E,).

E; is also upset by, for example, Young’s (1993) selection-mutation proces.s.
Suppose, when starting in E;, that one agent of type £, “mutates” to m,. This
mutation implies the following selection process: player 2 plays r3 after my,
which leads both #; and #, to play m,, causing finally player 2 to play 2. Sf’
one mutation is enough for reaching E,’s basin of attraction when starting in
E,’s absorbing set. The converse is false. This game has one more absorbing
set, which is also at one mutation from E,’s basin of attraction, the converse
being false. This completes the proof by ensuring that E, is observed with
probability close to 1 over the long run.

Finally look at the game depicted in figure 3:

(3.2)

2.4) r
my 1 m2
T

2 Q 2|

o B1)
0.5 /
mq 1 ma
2 2\ 2.3

Figure 3. Similar to figure I's legend.

1.2

(4.1.5)

A

(1.5,2)

This game has 2 Sequential Equilibrium paths, E; and E,, characterized by:

E;: player 1 plays m; regardless of type and player 2 plays r; after m,.

E,: t; (t) plays m; with probability 1/7 (4/7), m, with the complementary
probability, player 2 plays r, with probability 5/13 (6/13) after m; (my), ry
with the complementary probability.

E; (s outcome) is not Stable. Yet E; is a CFIEP and it is not upset by
the selection-mutation processes.
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E; is not Stable because, if 7, due to the perturbations, deviates more
to my than t,, then player 2 is led to play r; after m,. To prevent this (E,
upsetting) action, #, has to play m, more than required by the perturbations.
Yet, to do this, he should be indifferent between my (which ensures him a
payoff equal to 4) and m, (which ensures him at most a payoff equal to 3),
which is clearly impossible.

In contrast E; is a CFIEP, because there does not exist a consistent system
of beliefs which upsets E;.

Neither is E; upset by a selection-mutation process. Indeed, one mutation
is not enough for reaching E,’s basin of attraction when starting in E;’s
absorbing set, whereas the converse way only requires one mutation. To
capture why one mutation is not enough for leaving E;’s absorbing set,
consider the E, limit Sequential Equilibrium where player 2 plays r; with
probability 2/3 after m,. Introduce one mutation of player 2, such as one more
agent pays r, after my. It follows a selection process, that indeed, intuitively,
in a first time, begins by leading the system away from E;; however, in a
second time, it leads the system back to E;. Indeed the different steps of
the selection process are: #; plays my, player 2 plays r| after m, and r, after
my, 1, plays my, player 2 plays r, after m,, ¢, plays m;, player 2 plays r,
after m, and #, plays m;. Hence the introduced mutation is not sufficient
to break out of E;’s absorbing set (any other mutation would not allow to
leave E;’s absorbing set either).

IV. DISCUSSION

The above examples do of course not prove the convergence in equilibrium
selection. Yet they are sufficiently general to prove that the observed
convergence is not a chance event. Thus there is a link between forward
induction criteria and selection-mutation processes; in this section we yield
some insights into this link, and, thereby, into the relationship between
evolution and rationality.

It wrns out that both the selection process and the mutation process are
critical to the convergence. But, before discussing their joint impact, it is
worth recalling that a selection process exhibits more rationality than is
commonly believed (this rationality partly explains the convergence between
selection processes and backward induction criteria (see Bomze, 1986; Van
Damme, 1987).
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Indeed, as already discussed in (for example) Kandori, Mailath & Rob
(1993) and Samuelson (1991), a myopic behavior is not irrational if the
system evolves slowly (replicator equations and Samuelson, 1991), as, as a
result, tomorrow does not stronly differ from today. A slow evolution may
by itself be rational, in that it may protect the system from overshooting
phenomena, which hasten a system from a bad (i.e. a low outcome) state to
another bad state, without ever leading it to a good state. Limited memory and
incomplete sampling (Young, 1993) act similarly. Incomplete sampling allows
players to not reply to the same play’s states, which can prevent the system
from being stuck in suboptimal cycles. Limited memory can allow to forget
more fastly bad states, and hence allow to reach more fastly a good state.

We now go into the joint selection-mutation process.

To understand the critical role of mutations (selection processes alone
would not lead to the same equilibrium selection) the best is to consider
them as experimentations, rather than perturbations. Hence, when a player
“mutates”, he tries out a new behavior. Recall now that the forward induction
principle leads the players to look for new (i.e. out of equilibrium) strategic
actions, which can make them better off; if such actions exist they will be
played. Hence, according to the forward induction principle, players also
try out new behaviors, but only those which can increase their payoff. The
mutation process by itself does not fit this condition of rational investigation,
as it is a random process. Yet infinite repetition and full support ensure that
the players will necessarily try out all the actions, including those which
make them better off. Hence infinite repetition and full support remedy for
the absence of rationality.

Yet, it is not enough to reach an interesting path, one has to stay on it. That
is the role of the selection process. In many ways, the selection process works
like a consistency process. Indeed, it consists of the sequence of best replies
involved by a state of play. Hence a mutation allows to leave an equilibrium
path (more generally an absorbing set) only if the sequence of best replies,
implied by this mutation, leads to a new equilibrium path (more generally
to a new absorbing set). Otherwise, one concludes that one mutation is not
enough for the system to leave the tested path. Forward induction criteria
based on the notion of consistent signal proceed on much the same way (this
can readily be observed by looking at the three above games). In contrast,
the other forward induction criteria do not share this way of doing, which
explains the different equilibrium selection in the last studied game.

Let us make an additional comment on mutations. Mutations are not
“conservative”, which can explain the difference between the Stable Set
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selection and the selection-mutation one, in the game depicted in figure 2.
Indeed, the Stable Set criterion aims to sustain the tested set of outcomes.
Simply put, for any set of small perturbations, one seeks to keep the tested
set, by looking for perturbed actions which are in support of it. The mutation
process does not share this way of doing: there is no wish to come back
to the (due to the mutations) left absorbing set. The CFIEP shares this
“unconstraint” investigation. Indeed, it also studies the possible meaning of
out of equilibrium actions, without trying to sustain the tested equilibrium
path.

To summarize, the preceding comments especially underline the
convergence between forward induction criteria based on the notion of
consistent signal and selection-mutation processes. They show why a random
process with full support, coupled with a myopic best reply process, can lead
to the same equilibrium selection than forward induction criteria (based on
perfectly rational players and common knowledge) providing that the game
is repeated an infinite number of times. Perhaps paradoxically, this result
Justifies a more systematic use of forward induction criteria in economy, a
field where agents are not perfectly rational, nor perfectly informed of the
structure of the situation in which they evolve. Indeed, as forward induction
criteria lead to the same results as criteria based on random search and
limited rationality (which seem better adapted to economic situations), there
is no call to not use the first ones (all the more it is sometimes more easy
to work with them).

Yet the nice convergence of (especially) the CFIEP criterion and the
(Samuelson, 1991 and Young, 1993) selection-mutation processes, in the
examples of section 3, can not lead to a outburst of enthousiasm, at least for
the three following reasons. To begin with, the CFIEP criterion, contrary to the
selection-mutation processes, can not eliminate perfectly mixed equilibrium
paths, for lack of out of equilibrium actions. Next, the CFIEP criterion and
the selection-mutation processes are not defined for the same games: the
CFIEP definition is restricted to signaling games, whereas the (Samuelson,
1991 and Young, 1993) selection-mutation processes apply to more general
games, but with finite strategies’ sets. Finally forward induction criteria and
selection-mutation processes contrast strongly in the time needed to reach the
selected equilibria: the first criteria compute them instantaneously, whereas
the second ones may require a very long time for the equilibria to arise.
Hence the convergence only exists when the time horizon is long enough to
allow the game to be repeated many times.
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V. CONCLUSION

This paper is just an introduction. We only threw light on some convergence
properties between forward induction and evolution processes. If this led us
to speak about rationality, we never went into the concept of rationality. We
merely employed the standard (game theoretical) definition, by which a player
is rational if he takes into account all his information to maximize his payoff.

Nor did we discuss the related concept of learning.

At first sight, learning only makes sense in the selection-mutation processes
(forward induction implies instantaneous learning). We follow Young (1993)
in pointing out that learning needs not occur at the player’s level. Indeed
selection-mutation processes never suppose that the agents playing over time
are the same. More precisely, the agents playing at a period may disappear
(die) after playing; hence they can not improve their behavior over time,
they can not learn. Yet, this will not prevent the society from improving the
observed state over time. Hence learning occurs at the society level, but not
necessarily at the individual one.

Yet we are quite aware that the notions of rationality and learning much
richer concepts. So, for example, learning can not be reduced to the adaptation
to (or searching for) a best way of behavior in a given pattern of behaviors.
Learning and rationality should allow to improve on the behavior process
itself. To give an example, they should not only lead the players to test
new actions, but they should also drive them to test new selection processes,
which may not necessarily be based on myopic best replies.

Going into these considerations would lead us far beyond the scope of
the paper. So, to conclude, we only recall some works in game theory (or
related topics) which tackle some of the issues raised above. Swinkels (1990)
underlines a problematic feature of the Evolutionary Stable Strategies concept
(see Maynard Smith, 1982); according to this concept, a rule of behavior is
dismissed if it is not able to resist to a small number of agents switching
to a new behavior. Yet, the new rule of behavior may itself be dismissed in
the same way. Is it then rational for the players to change their first way
of playing? In cooperative game theory, the notion of Bargaining Set (see,
for example, Aumann & Maschler, 1964) tackles a similar problem. At last,
it may be fruitful to pay attention to the literature on rational conjectural
variations, which deals with the learning of the way in which the agents react
(see Ulph, 1982 for a survey).
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systems and biological evolution in turn have lead to independent
optimisation methods. The field of evolutionary computation comprises
genetic algorithms, genetic programming, evolutionary programming
and evolution strategies on which this paper will focus. Because these
algorithms can also serve as simple models of the underlying natural
processes, why not forget about the problem solving capabilities for a
moment and put the emphasis on self-adapting behaviour? And why
not translate these results to other domains, thus stressing the similarity
of the notions ‘self-organisation’ and ‘evolution’ and their usefulness a
common descriptive language across the scientific disciplines?

Résumé

Depuis quelques années, les algorithmes d’optimisation (globale) imitant
certains principes de la nature, ont pu démontrer leur utilité¢ dans des
domaines d’application variés. Annealing processes, le systéme nerveux
central et I'évolution biologique ont chacun conduit 2 des méthodes
d’optimisation indépendantes. Le domaine de calcul évolutionniste
comprend les algorithmes génétiques, la programmation génétique,
la programmation évolutionniste et les stratégies évolutionnistes sur
lesquelles cet article sera focalisé. Puisque ces algorithmes peuvent aussi
servir de modeles simples pour les processus naturels qu’ils représentent,
pourquoi n” oublions-nous pas leur capacité a résoudre des problemes afin
d’étudier leur comportement auto-adaptatif ? Et pourquoi ne pas étendre
ces résultats a d’autres domaines, soulignant ainsi la similitude de notions
telles que « self-organisation » and « evolution » ainsi que leur utilité en
tant que langage descriptif commun 2 plusieurs disciplines scientifiques ?
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