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systems and biological evolution in turn have lead to independent
optimisation methods. The field of evolutionary computation comprises
genetic algorithms, genetic programming, evolutionary programming
and evolution strategies on which this paper will focus. Because these
algorithms can also serve as simple models of the underlying natural
processes, why not forget about the problem solving capabilities for a
moment and put the emphasis on self-adapting behaviour? And why
not translate these results to other domains, thus stressing the similarity
of the notions ‘self-organisation’ and ‘evolution’ and their usefulness a
comimon descriptive language across the scientific disciplines?

Résumé

Depuis quelques années, les algorithmes d’optimisation (globale) imitant
certains principes de la nature, ont pu démontrer leur utilité dans des
domaines d’application variés. Annealing processes, le systeme nerveux
central et 1’évolution biologique ont chacun conduit & des méthodes
d’optimisation indépendantes. Le domaine de calcul évolutionniste
comprend les algorithmes génétiques, la programmation génétique,
la programmation évolutionniste et les stratégies évolutionnistes sur
lesquelles cet article sera focalisé. Puisque ces algorithmes peuvent aussi
servir de modeles simples pour les processus naturels qu’ils représentent,
pourquoi n’oublions-nous pas leur capacité a résoudre des problemes afin
d’étudier leur comportement auto-adaptatif ? Et pourquoi ne pas étendre
ces résultats a d’autres domaines, soulignant ainsi la similitude de notions
telles que « self-organisation » and « evolution » ainsi que leur utilité en
tant que langage descriptif commun 2 plusieurs disciplines scientifiques ?
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I. INTRODUCTION

Suppose you have to solve the following problem: According to some
quality criterion (objective function, model) you are looking for such a
setting of the parameters (inputs, regulators in Figure 1) that the output
reaches its (global) optimum.

quality function

cost,
efficiency,
deviation,

Figure 1. The ‘black box’-model of optimization.

Mathematically speaking: Given a quality function (model)
f: MCR"-R,

find a parameter setting ¥* € M so that

F@ < F (@)
holds for all &€ M. Often this abbreviates to f (&) — max. f(Z*) is
called global maximum. Because of max{f (%)} = —min{~f(Z)} the

minimization task is equivalent.
What can you do in order to solve this problem?

1. You can try to either gain more or exploit your existing knowledge
about the interior of the black box. If the objective function turns out to
be smooth and differentiable (see e.g. Figure 2, left) analytical methods will
produce the exact solution.

2. If this turns out to be impossible you might try the brute force method
of enumerating the entire search space. But with the number of possibilities
growing exponentially in n—the number of dimensions (inputs)—this method
becomes infeasible already in low-dimensional spaces.

3. That is why mathematicians have tried to develop a theory for certain
kinds of problems leading to specialized optimization procedures. These
algorithms perform well if the black box fulfils their respective prerequisites.
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For example, Dantzig’s simplex algorithm (Dantzig, 1966) probably represents
the best known multidimensional method capable of efficiently finding the
global optimum of a linear, hence convex, objective function in a search
space limited by linear constraints.

Gradient strategies are no longer tied to these linear worlds, but they
‘smooth’ their world by exploiting the objective function’s first partial
derivatives which have to be supplied in advance. Therefore, these algorithms
rely on a locally linear internal model of the black box. Newton strategies
additionally require the second partial derivatives, thus building a quadratic
internal model. Quasi-Newton, conjugate gradient and variable metric
strategies approximate this information during the search.

The deterministic strategies mentioned so far cannot cope with
deteriorations, so the search will be stopped if anticipated improvements
no longer occur. In a multimodal environment (see e.g. Figure 2, right), these
algorithms move “uphill” from their respective starting points. Hence, they can
only converge to the next local optimum. Newton-Raphson-methods might
even diverge if there is a discrepancy between their internal assumptions and
reality. But of course, these methods turn out to be superior if a given task
matches their requirements. Not relying on derivatives, polyeder strategy,
pattern search and rotating coordinate search should also be mentioned here
because they represent robust non-linear optimization algorithms (Schwefel,
1981).

4. Dealing with technical optimization problems one will rarely be able to
write down the objective function in a closed form & — f (Z). Often you
need a simulation model in order to capture reality. In general, you cannot
even expect these models to behave smoothly. Consequently, derivatives
do not exist. That is why optimization algorithms have been developed
which can successfully deal with black box-type situations. The increasing
applicability is of course paid for by a loss of convergence velocity —compared
to algorithms specially designed for the given problem. Furthermore, the
guarantee to find the global optimum no longer exists.

But why turn to nature when looking for more powerful algorithms?

In the attempt to create tools for various purposes mankind has
copied —often instinctively —solutions ‘invented’ by nature. Nowadays, it can
be proven in some cases that certain forms or structures are not only well
adapted to their environment but have even reached the optimum (Rosen,
1967). This is due to the fact that the laws of nature have remained stable
during the last 3.5 billion years. For instance, at branching points the ratio of
the diameters in a system of blood-vessels is close to the theoretical optimum
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Figure 2. Easy and difficult topologies of objective functions.

provided by the laws of fluid dynamics (271%). This, of course, only represents
a limited, engineering point of view on nature. In general, nature performs
adaptation, not optimization.

The idea to imitate basic principles of natural processes for optimum
seeking procedures already emerged more than three decades ago
(Bremermann, 1962; Rechenberg, 1973; Holland, 1975; Schwefel, 1977).
Although these algorithms have proved to be robust and direct optimization
tools, only during the last five years people have started to pay more attention.
This is due to the fact that many people still look at organic evolution as a huge
game of dice, thus ignoring the fact that this ‘model” of evolution cannot have
worked: A human germ-cell comprises approximately 50.000 genes, each of
which consisting of about 300 triplets of nucleic bases. Although the four
existing bases only encode 20 different amino acids, 20!5-000000;1(19.500.000
different genotypes had to be tested in only ~10'7 seconds—the age of our
planet. So, simply “rolling the dice” could indeed not have produced the
diversity of complex living systems observable today. Accordingly, taking
random samples from the high-dimensional parameter space of an objective
function in order to hit the global optimum must fail (Monte-Carlo search).
But by looking at organic evolution as a cumulative, highly parallel sieving
process, the results of which pass on slightly modified into the next sieve, the
amazing diversity and efficiency on earth no longer appears miraculous. When
building a model, the point is to isolate the main mechanisms which have

EVOLUTION STRATEGIES SIMPLE “MODELS” OF NATURAL PROCESSES? 631

led to today’s world and which have been subjected to evolution themselves:
Inevitably, nature has come up with a mechanism allowing individuals of
one species to exchange parts of their genetic information (recombination or
crossing-over), thus being able to meet changing environmental conditions
in a better way.

Today, one may distinguish four types of evolutionary algorithms. For an
introduction and a comparison of the first three, see (Bick and Schwefel,
1993).

* evolution strategies

« evolutionary programming

« genetic algorithms

* genetic programming

In the following, this paper will focus on multimembered evolution
strategies as proposed in (Schwefel, 1977 and 1981).

IL THE (4 )) EVOLUTION STRATEGY

Rechenberg (1973) and Schwefel (1977) developed the evolution strategies
when they wanted to optimize technical objects like e.g. a flashing nozzle.
No closed form analytical objective function was available, and hence, no
applicable optimization method existed at that time. Their first attempt to
imitate principles of organic evolution on a computer still resembled those
iterative optimization methods known up to that time: In a two-membered or
(1+1) evolution strategy, one “parent” generates one offspring per generation
by applying normally distributed mutations, i.e. smaller steps are more likely
than big jumps, until a ‘child’ performs better than its ancestor and takes its
place. Because of this simple structure, theoretical results for stepsize control
and convergence velocity could be derived: The ratio between successful and
all mutations should come to 1/5. This first algorithm was then enhanced to
a (u + 1) strategy which incorporated recombination for the first time with
several parents being available. The mutation scheme and the exogenous
stepsize control were taken across unchanged.

Schwefel (1977, 1981) generalized these strategies to become the
multimembered or (/_L+’/\) evolution strategy which imitates the following
basic principles of organic evolution:

» population, leading to the possibility of

* recombination with random mating,




632 F. KURSAWE

« mutation and

* selection

An ‘individual’ on the computer consists of the following ‘genes’
representing a point in the search space:

genotype
l X, 5,
f(x) phenotype

Figure 3. Structure of an individual.

» Real-valued object variables x; have to be tuned by recombination and
mutation in such a way that an objective function reaches its global optimum.
Referring to the metaphor mentioned previously, the x; represent the regulators
of the black box in Figure 1.

* Real-valued strategy variables or mean ‘stepsizes’ o¢; determine the
mutability of the x;. They represent the standard deviation of a (0, o;)
Gaussian distribution being added to each x; as an undirected mutation.
With an expectancy value of 0, the parents will produce offsprings similar to
themselves on average. In order to make a doubling and a halving of a stepsize
equally probable, the o; mutate log-normally distributed from generation to
generation. These stepsizes hide the internal ‘model” the population has made
of its environment so far. In other words, a self-adaptation of the stepsizes has
taken over from the exogenous control of the (1 + 1) strategy. This concept
works because selection sooner or later prefers those individuals having built
a good model of the objective function, thus producing better offsprings.
Hence, learning takes place on two levels (see Figure 4).

 Depending on an individual’s x;, the resulting objective function value
f (%) serves as the ‘phenotype’ (fitness) in the selection step. In a plus
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strategy, the 1 best of all (2 + A) individuals survive to become the parents
of the next generation. Using the comma variant, selection takes lafe onl
among the A offsprings. The second scheme is more realistic an(f thereforz
more successful, because no individual may survive forever—which could at
least theoretically occur using the plus variant. Untypical for conventional
thimization algorithms and lavish at first sight, a comma strategy allowing
intermediate deterioration performs better: Only by ‘forgetting’ individuals
with a good phenotype, which may have been achieved with an internal model
that is no longer appropriate for further progress, a permanent adaptation
of the stepsizes can take place and avoid long stagnation phases due to
misadapted stepsizes.

By choosing a certain ratio 41/, one can determine the convergence property
of the evolution strategy: If one wants a fast, but local convergence, one should
choose a small ratio (e.g. (5, 100)), but looking for the global optimum, one
should favour a ‘softer’ selection (e.g. (15, 100)). Figure 4 displays the self-
adapting capabilities of different evolution strategies under varying selection
pressure. Using

as the objective function, n=30 stepsizes have to be tuned properly with
respect to each other in order to achieve maximum progress in adjusting the
n=30x; on the first level.

Curve A represents the performance of a strategy provided with perfect
‘knowledge’ about its environment (o; = ¢/ \/‘E), whereas in B, randomly
chosen relations of the o; were fixed. In curve C, the stepsizes could self-adapt
by means of mutation and recombination. Not surprisingly, ;& = 1 proved
to be the best choice for A and B where only one stepsize had to adapt,
because all relations had been fixed. On the other hand, one should choose Iz
between 12 and 17 if one wants learning to take place (C). Two observations
from Figure 4 are remarkable: The (15, 100) strategy converges nearly as fast
as variant A, and it performs better than the (15, 100) strategy with perfect
knowledge. One can regard this phenomenon as a synergetic effect: 15 ‘fools’
perform better collectively than the same number of ‘specialists’.

Self-adaptation within evolution strategies depends on the following
‘agents’ (Schwefel, 1987):

* One cannot model mutation as a ‘pure’ random process. This would mean
that a child is completely independent of its parents.
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Figure 4. Optimum selection pressure.

» The population has to be sufficiently large. Not only the ‘current best’
should be allowed to reproduce, but a set of good individuals. Biologists have
coined the term ‘requisite variety’ being necessary to prevent a species from
becoming poorer and poorer genetically, eventually dying out.

« In order to exploit the effects of a population (1 > 1), the individuals
should recombine their knowledge with that of others (cooperate) because
one cannot expect the knowledge to accumulate in the best individual only.

« In order to allow better internal models (stepsizes) to provide better
progress in the future, one should accept deterioration from one generation
to the next. A limited life-span in nature is not a sign of failure, but an
important means of preventing a species from ‘freezing’ genetically.

Evolution strategies have proven their capacity on a large number of test
problems in an extensive comparison with other iterative methods (Schwefel,
1977). They are adaptable to nearly all sorts of problems in optimization,
because they need very little information about the problem—especially no
derivatives of the objective function. For a list of more than 260 applications
of evolutionary algorithms, see (Bick ef al., 1992). They are capable of
solving high dimensional, multimodal, nonlinear problems subject to linear
and/or nonlinear constraints. The objective function can also hide the result
of a simulation, it does not have to be given in a closed form. This also
holds for the constraints which may represent the outcome of a finite elements
method (FEM). Evolution strategies have been adapted to vector optimization
problems (Kursawe, 1992), and they can also solve NP-complete problems
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like the travelling salesman problem or problems with a noisy or changing
response surface.

But apart from focusing on their problem solving capacity, one may also
concentrate on the conditions under which self-adaptation takes place in
evolution strategies. And why not transfer these results—although originating
from an ideal and artificial world—to other, real-life domains?

ITL. TRANSFERRING THE OBSERVATIONS TO...

3.1. ...Biology

Since evolution strategies rely upon the collective learning paradigm of
natural populations introduced by Darwin and embedded in today’s synthetic
theory of evolution, using these strategies as a model of biological processes
seems obvious.

* As stated before, a limited life-span enables a species to cope with
an environment undergoing change. Accordingly, only a comma strategy
allowing each parental generation to reproduce exactly once is able to
follow an optimum wandering over time. Holding on to good, but outdated
phenotypes the plus variant fails to perform this task.

* So far, evolution strategies only use haploid individuals, thus abandoning
the effects of dominance and recessivity. Diploid individuals are not worth
the additional computing time in an environment remaining stable over time,
i.e. in the case of one objective function. But when evolution strategies try
to compute the Pareto set of a vector optimization task, the selection step
has to be modified in such a way that each of the k (>1) objective functions
becomes the selection criterion according to a probability vector. From an
individual’s point of view, the environment changes rather drastically which is
why diploid individuals turn out to be necessary in the multiple criteria case.
And again, one can find a biological analogy: For certain plants the relation

degree of polyploidy in percent = latitude

holds. Measuring time on a geological scale, in Greenland, the past-
glacial environment may be regarded as relatively young compared to the
environment in south of Greece which has not changed during the last
ice-age.

* The basic mechanisms of organic evolution have undergone an evolution
themselves, too: Nature has ‘invented’ (sexual) recombination as a means
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of exchanging genetic material between the individuals of one species in
order to prevent parasites from adapting to a certain genotype too well. In a
difficult topology like the one in Figure 2 on the right, recombination also
turns out to be crucial for finding the global optimum and not just a local
one (convergence security):

Fitness of the best individual
1e+10 T T T T
with ~——
without -----
o
@
@
& T
=3
°
1e-10 - . L s
[¢] 500 1000 1500 2000
generation

Figure 5. A (15, 100) strategy with and without recombination.

« Schwefel (1975) developed a variant of evolution strategies being capable
of solving discrete (here: binary) problems by modelling somatic mutations.
The observation of an ambiguous relation between an individual’s genotype
and phenotype forms the biological background of this idea. This ‘disturbed’
relation can be interpreted and modelled as the result of errors happening
during ontogenesis. If this hypothesis of a connection between the genetic
mutation rate and the somatic error rate is correct this model may help
to explain the non-genetic variance of morphological attributes (e.g. body
length, tail length, weight, ...) observable within populations of genetically
identical mammals.

Again, within the algorithm, learning takes place on two levels: On the first
level, 100 bits have to set correctly. This is achieved by attaching to each
bit its private mutation probability. For those bits which have already been
set correctly this rate remains near its starting value (=107%), whereas the
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wrong bits have to increase their mutability to such a value (=~107%) that the
desired mutation finally occurs. Afterwards, this value has to decrease again
in order to prevent the correct bit from flipping once more. In contrast to
the previous one, Figure 6 now demonstrates the influence of recombination
on convergence velocity:

average of 100 runs
200 T T T T T T v

without recomb.

generations

20 30 40 50 60 70 80 90 100
number of cell divisions

Figure 6. A modified (15, 100) strategy using different types of recombination.

Setting all mutation probabilities to 107, one can expect to perform
~1.800.000 trials until the last three bits have been set correctly preserving
the correct bits. The modified evolution strategy only needs ~9.000 mutations
using recombination, thus emphasizing again that nature cannot be regarded
as a pure random walk.

3.2. ...Organizational Psychology

Darwin’s basic assumption that organisms can only survive if they perform
some sort of adaptation within their environment has inspired psychologists
being occupied with the organizational structure of firms: Why should one
organizational structure exist which performs equally well in all sorts of
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situations? On the contrary, different environments ask for different, specially
adapted structures. This rather situational or contingency approach has
empirically found out that bureaucratic organizations most easily prosper
in stationary or settled surroundings. But dynamical environments demand
for the internal adaptability of so-called organic organizations relying on
well-educated and autonomous, self-supporting members. In this context,
knowledge can be regarded as a social product enabled by and permanently
expanded and corrected by an exchange of ideas. If practical problems go
beyond the limits of one scientific discipline one does not necessarily need
inventions. Often the required knowledge already exists, but the respective
‘owners’ fail to discover its relevance within the given problem’s frame of
reference.

In evolution strategies, the recombination operator ‘exchanges ideas’ —the
existing knowledge hidden in the stepsizes. As stated before, abandoning
recombination (cooperation) when solving a simple problem only leads to
a loss of efficiency (see Figure 6), but facing a difficult task the solution
yielded will be far from the global optimum (see Figure 5).

There are hints that, under certain, but rare conditions, the formation of
a group adapts to the task’s complexity: In the case of simple problems,
centralized network structures develop, whereas complex tasks lead to
decentralized structures. Within existing organizations, formal hierarchies
normally prevent this process.

The design of a meta-evolution strategy capable of adapting population size,
selection pressure and recombination type is currently under development.
This algorithm should confirm the following result: In a smooth and simple
world like the one in Figure 2 (left), a (1, 100) strategy with only one stepsize
for all x; performs far better than a (15, 100) strategy with 30 stepsizes which
in turn is more appropriate in difficult, multimodal environments:

The notions ‘lean management’ and ‘lean production’ may also fit into
the frame of this section. They have originated from a 1990 MIT study
which tried to convey a Japanese concept—known as the Toyota production
system since 1973 already —to the U.S. car industry. Often, ‘lean’ is being
misunderstood nowadays as a justification of dismissals. Doing so can reduce
the unspecific—in an economic sense: unnecessary —resources or the requisite
variety in such a way that a change in the outside world becomes more
difficult to cope with. But with the true background being the idea of a
lean organization one should concentrate on integrating those activities not
being involved directly in the production process, like e.g. surveillance,
quality control and maintenance. Shifting these functions to the worker the
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Figure 7. A (1, 100) versus a (15, 100) strategy competing in the topologies of Figure 2, n = 30.

enhanced responsibility leads to a more interesting job, thus establishing a
feedback loop between a worker’s creative abilities and his/her own working
conditions. Additionally, regular discussions (‘quality circles’) held across
several hierarchical layers promote the distribution of knowledge.

3.3. ...Economics

The main principle of synergetics consists in explaining an observable
order from within the system or endogenously. In economics, the invisible
hand (Adam Smith) already conveyed the idea of self-organizing markets
in order to explain how individual decisions lead to the formation of
structures. With this idea serving as a descriptive ‘theory’ only, the scientific
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interest shifted towards the analysis of market equilibria using the laws of
mechanics. Nowadays, evolutionary economics no longer examine the process
of converging against an equilibrium but rather concentrate on the formation
and diffusion of innovations. Furthermore, time has become irreversible: The
history of an economic process has to be considered when explaining its
further development.

With concepts like the ‘bounded rationality’ trying to overcome the
idealistic assumption of an agent’s intentional behaviour, why not model
individuals stochastically in order to capture the variety of behavioural norms?
With a selection step present (externalities) a long-term macroscopic order
may emerge which in turn effects or even ‘enslaves’ the ‘fast’ variables on
the lower level. A market can remain stable for a certain time, but when
approaching one of this stable ‘island’s’ borders, already small variations
can lead to a new state of order (bifurcation or path-dependencies, lock-in
effects). The victory of the VHS video system over the Beta video system,
which was said to be superior technically, depended on a small majority of
people preferring VHS in the beginning (Briggs and Peat, 1989). Externalities
have a strong influence in this example: The more widespread one system is,
the better the support from the complementary good markets. Consequently,
the decision depends on the perception of the number of systems already sold
and the expected utility assigned to it.

Figure 8 displays the performance of an evolution strategy under high
selective pressure. There are phases of stagnation and phases of rapid change
emerging endogenously—a phenomenon biologists refer to as ‘punctuated
equilibria’ (Eldredge and Gould, 1972, 1977).

Maybe, unwanted discontinuities can be overcome by a closer ‘cooperation’
between economies, t0oo. And maybe, a sustainable growth can only be
achieved in this way—if it exists at all. The last worldwide stock market
crash (without any serious economic foundation) has demonstrated how
sensitively markets with selfish, maximizing agents, rigid rules and a deceptive
security respond to small disturbances. But if the assumption of continuity is
wrong (Boulding, 1991), maybe recessive phases help to ‘forget’ traditional
technologies, firms and institutions releasing niches for the entry of innovative
elements, thus enhancing diversity and resulting in a more robust economy
(Eliasson, 1991).

The assumption of a nonlinear world surrounding us bears consequences:
For we do not know exactly what we are doing when interfering with any
kind of system comprising nonlinearities. Even the best intentions can lead
to unbounded consequences.
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Fitness of the best individual
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Figure 8. A (4, 40) strategy adjusting 30 parameters.
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des activités concertées liées & leurs domaines : (séances de réflexion, rapports d'orienta-
tion, publications, journées d'étude, congrés)

Comités Techniques : « Informatique fondamentale

* Aide & la décision et recherche « Intelligence artificielle et reconnaissance
opérationnelle des formes

« Architecture des systémes informatiques « Langages de programmation et génie

» Automatique et productique logiciel

+ Bases de données - Sécurité et sireté informatiques
« Bureautique : document, groupware, L. Systémes dinformation

multimedia o - Systémique et cognition
« Cultures, techniques et organisation « Vie arificielle
Groupes de Travall :
Les groupes de travail (plus de 90) constituent un lieu privilégié de rencontres réguliéres
des membres de I'Association venant de tous les horizons, favorisant la confrontation de
leurs expériences et de leurs besoins.

Relations internationales :
Par sa participation & de nombreuses fédérations internationales I'AFCET contribue a
diffuser les travaux frangais dans le monde entier.

Demande de renseignements : AFCET, 156 Bd Péreire - 75017 Paris - Tél. : 47 66 24 19
Fax:42679312 :
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Code postal : .............

« Désire recevoir des informations: surles revues 00  les groupes de travail O

les fédérations internationales O les congrés O
« Désire recevoir une feuille d'adhésion 1994 O




