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TECHNOLOGY EVOLUTION AND THE RISE
AND FALL OF INDUSTRIAL CLUSTERS*

Peter SWANN !

Abstract

This paper explores how the evolution of technologies influences
the relative success of different regions or clusters at producing
those products. In particular, it explores how the convergence of
communications, computing and software technologies influences the
relative success of “one-technology clusters” (concentrating on one sub-
sector of the industry) and “multi-technology clusters” (with strengths
is a number of different subsectors). The paper shows how some
multi-sector clusters tend to outperform single-technology clusters when
technological convergence is strong..

Résumé

Cet article explore comment I’évolution des technologies influence
le succes relatif que connaissent les différentes régions ou zones 2
produire leurs biens. L’article traite particulirement de la question de
la convergence des techniques de la communication, de I'informatique
et des Jogiciels, et de I'influence quelle peut avoir sur, d’une part
le succes des zones mono-technologiques (concentration sur un seul
sous-secteur d’industrie) et d’autre part, des zones multi-technologiques
(concentration sur plusieurs sous-secteurs). L’article montre comment
certaines zones multi-sectorielles ont une tendance & mieux réussir que
les zones mono-sectorielles, quand la convergence est forte.
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1. INTRODUCTION

Some aspects of technology or product evolution can be described by the
addition of further characteristics to the product, and in earlier work this
author has argued that the tendency of the dimensions of product space
to expand over time is one of the most important aspects of product
competition and product evolution. When characteristics are added in this
way, the competitive neighbours of any product are likely to change, as was
shown some time ago by Archibald and Rosenbluth (1975) . A particularly
interesting case arises when formerly distinct technologies and products
start to merge together, a leading example of which is the convergence of
computers and telecommunications (Arnold and Guy, 1986; Forrester, 1987,
pp- 200-204) 2 As products evolve, the new competitors for a product may
come from very different origins.

In consequence, naturally, firms will find that their competitive neighbours
will change as products evolve, and that their new competitors may come
from industries that they used to think of as quite distinct. This much is well
known even if it has not been analyzed empirically as much as it deserves.

This paper goes beyond the implications of product evolution for the
network of competitors, to look at the implications for industrial clusters or
regions. If the competitive neighbours of a firm change as the product evolves,
then so also does the network of companies from which it should ideally
like to absorb spillovers. Some of this process of absorption can be done by
joint venture at a distance (Hagedoorn and Schakenraad, 1992), but to the
extent that geographical proximity is required to enhance this process 3, then
the ideal geographical location for the firm may change. More generally, the
attractiveness of some clusters may fall because they do not contain the ideal
mix of companies and organisational expertise for making the newly evolved
product. Conversely, the attractiveness of some clusters will rise as they have a
mix of expertise not previously sought after, but now of considerable value *.

This analysis has some interesting dynamic properties. In some path
dependent models of industrial clustering, positive feedback is pervasive
—so that when one cluster surges ahead it will dominate the industry 3. Here,
by contrast, some types of product evolution may favour old-established
clusters with a high density of more traditional industries over newer, purely
high-tech clusters ©.

This paper uses an exploratory econometric model of clustering in the US
computer industry (explained in more detail in an unpublished paper, Swann,
1996) to explore this question. A simulation model is developed, based on
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that econometric mode} and is used to explore how different sorts of cluster
perform as formerly distinct technologies start to converge.

II. THE METHOD

The main aim of this paper is to see how product evolution, in particular
that type of product evolution which follows from the converger’lce of distinct
t.echnologies, influences the relative success of different sorts of cluster Ir; ar-
t1c1‘115}r, we want to examine the relative success of specialised cluster; (wfr:ere
activity is concentrated in one industry sector) and more general‘ urpos
clusters (where activity is dispersed across a number of industry secti())rs])3 )

To explgre this question we proceed as follows. We use our explorator
?conomfatrxc model (Swann, 1996) of clustering in the US computer industry
is a series of simulation experiments. This model (see Section 3) ca ture}s,
the degree of interaction and spillovers between different computer ingustr
sub-ss:ctors by means of two matrices: (1) an entry attractor matrix whicz
dgsonbes the extent to which a cluster with strength. in a particular sector ()
will attr?ct entry to another (7); and (2) a growth promotion matrix whigh
summarises the extent to which strength in one sub-sector (j) at a e;rticular
cluster will promote growth of another sector () in that cluster. P

These matrices can be taken to summarise the interaction between different
sub-sectors —rather like the input/output matrix 7. If the different technologies
are not connected (that is there has been no convergence) then it is reasonfble
tp ex.pect that the off diagonal elements of these matrices will be small
gposmbly even zero). If on the other hand these technologies are strongl
mtergor}nected (following convergence between two or more technologiegs)y
.then it is reasonable to expect that some at least of the off-diagonal elements’
in the matrix will be strong and positive, because the perfozr:mance of ont;
sgb— sector at a cluster will be dependent on the strength of other relevant
(i.e. convergent) sub-sectors at that cluster.

Th§ estimated matrices, see Section 3, do have some strong and positive
'off—d.lag.onal elements, which suggests a degree of convergence. To explore the
1m'phcat10ns of this convergence process, we perform simulation experiments
usmg a set of possible entry attractor and growth promotion matrices 1;1
particular, if the estimated matrices are defined (respectively) as T' anﬁ B

tdhe‘H the simulations encompass hypothetical attractor and promotion matrices
efined as follows (for different values of o):

If 1:J ’Y?i:"/iza
If L#J ’Y;‘j:O'*’yij./

B = Bu

By=0xf; [0<o<1] (M
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The other dimensions of variation in the simulations relates to the initial
conditions. Given the vector autoregressive character of the model, the
simulation model needs some sort of “kick” to get it started on a growth
path. This could be in the form of a pioneering firm (or group of firms)
setting up in a new location —and thereby making the foundations of a
subsequent cluster. In the simulations we experimented with different sorts
of “kick-start”. In particular we explored a grid of the 28 (= 256) possible
permutations: {E; = 0 or 100 employees in sector 4, i € [1, 8]}.

We conjectured above that specialised (i.e. single technology clusters) might
do best when the technologies are distinct, but when the technologies start
to converge, the specialised cluster will be at a disadvantage compared to
the more general purpose cluster. This is essentially the argument of Jacobs
(1969) who considers that the most important sources of knowledge spillover
are external to the industry in which the firm operates, and that spillovers are
strongest in cities with a diverse industrial mix. The results that follow find
some support for this thesis in the context of the US computer industry.

III. THE MODEL

The simulation model used here is a straightforward adaptation of our
econometric model of clustering in the US computer industry. In this section,
we provide a very brief summary of that model; full details of its derivation
are given in an unpublished paper (Swann, 1996). The clustering model is in
two parts. The first is a model of entry, and the second a model of growth
of incumbents for established firms).

I1L.1. Entry model

The basic entry model is as follows. The number of entrants in any sub-
sector (n.;¢) is a function of employment in each sub-sector at that cluster at
the end of the previous period (Ecj:—1), and of higher order terms in total
employment at the cluster (E...—1). The precise functional form, however, is
a little complex. It can be written:

4

. )
e, = e+ Z Y Bl g + Z S0 (I E%, )" + i 2

=1 6=2
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where:
. 1 &

Neip = Neit — c Z Teit 3)
mE;, | =InE,_ - o > By, )

. e 1C=1C’
(InE:_ ) =(nE.,_;)° - o > (B, 5

¢ ce=1
Bery = Zl B (6)

Where C' is the number of clusters, and where there are 8 sub-sectors in
the model. The parameters «;, v;; and ;¢ are respectively the cluster fixed
effects, the attractor effects of particular sorts of employment on entry, and
higher order congestion effects. Written in this fashion, it is relatively ,easy
to show that equation (2) satisfies the adding up condition, so that the sum
of predicted entry across each cluster equals total actual entry in all clusters.

It is convenient to renormalise the basic model as follows:

8 8
7Z‘r;it = a(':i + Z 71’; h’l E:jt_l + (/57, Z hl E:jt—l
=1 j=1
J#Jmin
4
+ D 6o (10 Bep 1) + gy 7

6=2

In this normalisation, all the v* parameters are positive, which has some
advantages —see below. The relationship between these v* and the original
7 parameters in (2) is straightforward:

Vis = Vii = Vijin ®
where j,i, is defined as follows:

Vimia = min {v;

! jell, 8] {n}

V’vher.e the v parameters are from the un-normalised equation (2). In short
Ll’jmm is the sector with the smallest (usually, the most negative) attractor effec;
in thg un-normalised equation (2). The merit of this normalisation is that all
the +y;; parameters in (7) are positive and can thus be interpreted as attractor
effects relative to the least useful sort of employment, while the ¢; parameter
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can be interpreted as a congestion effect: that is, the (probably negative)
effect on entry of an increase in the least useful sort of employment. Note

also that by definition:
Vijuin = Pi (10)

IIL.2. Growth model

The growth model examines how growth of employment in each sector
depends on cumulative exposure to employment in different sectors at that
cluster. Once again, polynomial terms are included to capture the effects of
congestion. No adding up restriction can (or need) be applied here, so the
model is a good deal simpler as a result:

8 8
Aln By = o + Z BijInEgjeq +; Z InEgj1
=1 j=1
j?Jf.’ixx\;..
4
+ > wio(InBeer)’ + ve (1)

6=2
with variables equivalent to those defined above (except that they are not
“starred”).

The interpretation of the parameters for the growth model are similar to
those of the entry model, though slightly different in detail. The .paramete.rs
in (11) are elasticities, which is convenient for interpretation) while those in
(2) and (7) were not. The pu,; terms are cluster fixed effects on growthj and
summarise the extent to which a particular cluster (c) tends to experience
above (or below) average growth rates in sector ¢. The f3;; parﬁameters
describe how an increase in employment in sector j at a cluster will increase
(or reduce) the growth of sector ¢ at that cluster. Finally, the ?rig parameters
in the growth model summarise the extent to which congestion sets in and
constrains further growth.

II1.3. Estimates of models

These models were estimated with data on the US computer industry. For
further details, the reader is referred to Swann (1994). The models describe
entry and growth in eight sectors of the US computer industry over the
period 1960-1988. The eight sectors are:

1. Communications

2. Chips (Integrated Circuits)
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3. Computer Hardware
4. Computer Distributors
5. Peripherals

6. Computer Services

7. Software

8. Computer Systems

It should be stressed at the start that the data available for this exploratory
econometric model had a number of limitations. Moreover, a number of
reasonably strong assumptions were required to estimate these models. First,
the data on “entry” are in fact data on surviving entry. Transitory entrants who
do not survive to the end of the period analysed (1988) are not counted. For
the purposes of the present paper, however, it is arguable that this is not too
serious because after all it is the contribution to growth made by surviving
entrants that concerns as rather than the more transitory contribution of
entrants who do not survive.

Second, we do not have employment histories for our sample of firms
~only a few isolated points. While it was possible to assemble a reasonably
accurate time series of the number of surviving firms in each sector at any
date, this is a poor measure of the strength of a cluster because it takes
no account of size: IBM is treated the same way as a one man computer
services company. For that reason we have computed a rough estimate of
employment in each cluster by estimating the size of each relevant firm in
each year, assuming that the firm grows steadily at its long run exponential
growth rate ~which can differ significantly from one firm to another. This is
obviously quite a strong assumption, and makes no allowance for cycles in
growth, resulting from business cycles, for example. But again, give that these
estimates as aggregated across firms, then for the exploratory purposes of the
present paper, the data can still give a rough indication of cluster strength.

Third, a substantial number of firms are active in more than one sector of
the computer industry, and it is usually difficult to say exactly how to split
the workforce between different sectors. Moreover, some giant firms Boeing,
for example, are important participants in parts of the computer industry,
but clearly only a proportion of their employment should be counted for
our present purposes. To handle these questions, a number of simplifying
—and quite strong- assumptions had to be made. Nevertheless, a number of
cross-checks using much simpler models confirms the essential character of
the models used for simulation in this paper.
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Tables 1 and 2 give the estimates for these two models. The fixed effects
for each state are not shown here. Table 1 shows the entry attractors () and
Table 2 the growth promoters (3). In the entry model there are some quite
strong cross-sectoral entry attractions —particularly from hardware, systems
and chips (components) to software and peripherals. In the growth model,
on the other hand, the cross-sectoral growth promotion effects are weaker,
and if anything the direction of the effects tends to be reversed —so that
software and peripherals tend to promote growth in hardware, systems and
communications.

Tuable 1. Entry Model. Gross Attractor and Congestion Effects.

Equation for sector

! 2 3 4 s 6 7 8

] 0 002 011 029 012 024 024 023
© (009)  (O13)  (009)  (027)  (O13)  (034)  (009)

2 018 0 076 054 167 022 206 036
(011 © (018)  (012)  (036)  (O17)  (048) (012

3 018 008 0 030 069 009 130 033
(008)  (.009) - 009)  (027)  (012)  (033)  (010)

4 009 001 002 0 003 021 0 024
(009)  (010) (014 ) (026)  (012) &) (011)

5 016 005 005 019 0 021 024 021
(009)  (010) (014 (008 ) (010)  (033)  (012)

6 0l4 .000 021 025 032 0 055 024
(009)  (010)  (013)  (008)  (02D) ) (031) (012

7 014 .006 018 01 045 031 013 030
(008)  (00%) (014  (008)  (029)  (013)  (O31)  (010)

8 014 003 028 045 100 018 137 0
(008)  (009) (014  (010)  (034) (016  (039) )
SUM 013 -.005 —011 -.024 -035 -.020 -055 -.023
(006)  (008)  (009)  (006)  (019)  (008)  (023) (008
SUM?2 057  _.025 -.13¢& -077 -38  -085 -349  -.039
* 10) (036)  (031)  (0ST)  (036)  (110)  (052)  (140)  (04D)
SUM > 011 004 023 014 064 016 054 006
* 10) (006)  (005)  (010)  (006)  (019)  (009)  (024)  (007)
suM* 006 002 -012 -007 -030 -009 -.023 -.003
(* 100) (003)  (002)  (004)  (003)  (009)  (004)  (OI)  (003)
R2 15 27 36 14 47 14 36 18
ESE A7 14 27 17 52 24 65 19

Note: Figures in parenthese are standard errors

The other result of importance is the higher order total employment effects
in each equation. There are a little difficult to interpret as they stand, but
it can be shown that they imply a cycle of entry. At low levels of total
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Table 2. Growth Model. Gross Promotion and Congestion Effects.

Equation for sector

1 2 3 4 s 6 7 8
| 034 014 007 004 0 025 004 ol
) (009)  (005)  (0I3) (019 -) (011 (017) (.002)
009 033 022 0 029 026 018 021
q (.8;? (008)  (.019) ) (019)  (016)  (022)  (012)
k . 0 0 012 005 0 065 033
, (.010) “ - (019) (014 “ (019)  (.010)
4 011 008 027 036 011 016 014 033
(01 (006)  (O14)  (021)  (015)  (012)  (018) (Ol
5 038 020 045 036 013 008 034 027
(012)  (006)  (01S)  (020)  (O1S)  (012)  (022)  (012)
6 025 001 047 024 015 on 020 030
) (013)  (005)  (014)  (020)  (O15)  (012) (0200  (012)
7 021 .006 027 011 017 035 0 032
) (010)  (006)  (014)  (OI7)  (013)  (012) &) (010)
8 0 001 004 056 043 ol 011 0
&) (006) (015  (O18)  (014)  (012)  (019) )
SUM =020  -.007 -023 —019 -012 -017 -030 -.028
(008)  (004)  (009)  (O16)  (OI0)  (008)  (012)  (008)
SUM? 080 016 104 -.034 033 125 129 027
(* 10) (037)  (02)  (053) (054  (055)  (045)  (072)  (037)
SUM? -012  -002 -015  0l4  -000 -020 -012  -.003
* 10) (007) (004  (010)  (010)  (010)  (008)  (O13)  (.007)
SuM* 005 000 006 -.007 -.002  .009 006 001
(* 100) (003)  (002)  (005)  (005)  (005) (004  (006)  (003)
R? 28 41 17 20 15
ESE 19 11 26 27 27 §§ 222 ?:

Note: Figures in parentheses are standard errors

employment in a cluster, entry is small. Entry then starts to rise as total
f:luster employment rises, but beyond a certain point, congestion clearly sets
in and entry drops off again 8. This effect plays an especially important role
in the simulations of the next section. All these results are discussed in much
more detail in Swann (1996).

1V. SIMULATIONS

The simulation model uses the above estimates for the normalised entry
model (7) and the growth model as a starting point °. As noted above, we
want to explore the implications of the convergence process between diffe,rent
technologies (or industry sub-sectors), and to this end we perform simulation
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experiments using a set of possible entry attractor and growth promotion
matrices. In particular, the simulations encompass hypothetical attractor and
promotion matrices defined as follows (for different values of o):

B = Bu
By=0xp; 0<o<1] (12

It i g 9 =0y,

The other dimensions of variation in the simulations relates to the initial
conditions. Given the vector autoregressive character of the model, the
simulation model needs some sort of “kick” to get it started on a growth
path. This could be in the form of a pioneering firm (or group of firms)
setting up in a new location —and thereby making the foundations of a
subsequent cluster. In the simulations we experimented with different sorts
of “kick-start”. In particular we explored a grid of the 2% (= 256) possible
permutations: {£; = 0 or 100 employees in sector i, i € [1, 8]}

Starting with a vector of initial conditions for employment in a cluster,
the simulation model computes entry and growth in each period, and then
accumulates that entry and growth into the employment estimates for the next
period. The simulations are run forward for 50 periods, and final employment
in each sector is recorded.

In short we have simulations for the 256 types of kick start and 4 values
of the convergence parameter o. These are far too bulky to reproduce in full,
but Figures 1 and 2 describe a two typical sets of results for two particular

1000000

100000 |-

10000 |-

1000 -

100 +

Employment in Sector 2 (Chips)

1 10 100 1000 10000 100000
Employment in Other Sectors

Figure 1.
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100000

10000

1000
100%

Employment in Sector 1 (Communications)

3 4 5 6 7 8

Number of Sectors in Which a 'Kick Start' is Given

Figure 2.

sectors, and Table 3 summarises the main points of importance in the set of
simulations for all sectors 10,

Figure 1 shows the maximum ! Jeve] of employment in sector 2 (Chips)
obtained in the simulations for a given total employment in all other
sectors. Figure 2 shows the maximum level of employment in sector 1
(Communications) across all relevant simulations, when the simulation is

given a “kick start” in 7, sectors —for m = 1,.... 8 In each case the
four different lines refer to different values of the convergence parameter

(o =25%, 50%, 75%, 100%). Table 3 shows for each sector, how the
level of employment reached in the sector depends on the convergence
parameter (o = 50%, 75%, 100%) and whether the number of “kick-starts”
is administered is right (N = Ninax), t00 few (VN = 1), or too many (N = 8).

5. INTERPRETATION OF SIMULATION RESULTS

The basic story is the same for most sectors. In Figure 1, peak employment
in the sector occurs further and further to the right as the convergence
barameter is increased from 25% to 100%. Moreover, the peak itself increases
as the convergence parameter is increased. Finally, the curves for different
convergence parameters intersect. With low employment in other sectors, the
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Table 3. Relative Employment with “kick-start” in Sector.

Relative employment with: “Kick Start” in sector:

Conver- Npaox N=Npx N=1 N=38 1 2 3 4 5 6 7 8

gence
1 100% 4 100.0 32.1 1.2 1 1 11
75% 3 43.0 29.8 0.9 1 1 1
50% 1 28.6 28.6 0.9 1
2 100% 5 100.0 39.1 273 1 11 1
75% 3 27.6 8.0 0.4 [ 1
50% 3 14.1 5.3 0.0 11 1
3 100% 4 100.0 21.7 32.1 1 1 1
75% 4 26.4 11.4 147 11 11
50% 2 11.8 115 11.5 1 1
4 100% 4 100.0 6.5 0.2 o1 1
75% 3 6.7 0.1 0.1 1 1
50% 2 0.3 0.1 0.1 1 1
5 100% 5 100.0 4.6 30.6 1 1 1 1 1
75% 4 7.3 0.2 0.2 1 1 11
50% 2 0.8 0.2 0.2 1 1
6 100% 2 100.0 77.4 33.8 1
75% 2 68.6 523 339 o1
50% 1 52.0 52.0 33.9 1
7 100% 3 100.0 11.6 8.9 1 1 1
75% 2 75.6 5.1 1.9 1 1
50% 2 13.6 2.2 1.9 1 I
Frequency 3 3 5 3 165 4 7

peak employment in sector 2 is reached with a low convergence parameter
(25%) while with a high level of employment in other sectors, the peak
employment in sector 2 is reached when convergence is high (100%).

How are these observations to be interpreted? Firstly, if convergence is low,
peak employment in a sector is reached when employment in other sectors
is low, but if convergence is high, then peak employment is reached when
employment in other sectors is higher. This is really just the observation that
when convergence between technologies is low, the best performing clusters
are the single-technology clusters. Clusters which have moderate employment
in several sub-sectors will tend to get congested, and this detracts from
employment growth in any one sub-sector. Conversely, when convergence is
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high, the best way to grow employment in a particular sub-sector is to exploit
the many spillovers between sectors '2, and this requires high employment
in other sectors. Even here, congestion eventually sets in. In Figure 1, when
convergence is high (100%), it is clear that employment in other sectors
must exceed 1,000 to reach peak employment in sector 2 (chips), but when
employment in other sectors goes far above 10,000 then the employment
level reached in sector 2 starts to dip —again a result of congestion.

Secondly, the fact that peak employment increases as the convergence
parameter increases follows simply from the observation that as the
technologies converge, so too does the degree of positive feedback in the

simulation model. The increase in the peak is not spectacular, but important
nevertheless.

Thirdly, the fact that with low convergence peak employment is found
where other-sector employment is low, while with high convergence the
peak is found where other sector employment is low, while with high
convergence the peak is found where other sector employment is high,
suggests the following. With low convergence, single-technology clusters
have an advantage over multi-technology clusters, because the latter do not
generate much in the way of useful spillovers, but do generate congestion
effects. Conversely, with high convergence, it is necessary to be in a multi-
technology cluster to take best advantage of the rich spillovers —though not
an omni-technology cluster, because there congestion sets in too fast.

Figure 2 gives perhaps an even simpler illustration of the simulations.
It shows the relationship between peak employment in Sector 1
(Communications) and the number of sectors in which a kick start is
administered. Three main observations can be made. First, for any particular
level of convergence, the peak level of employment is reached when a “kick
start” is administered in an intermediate number of sub-sectors, Second, the
optimum number of sectors in which to apply a kick start increases as the
level of convergence increases. And third, the peak employment level reached
increases as the rate of convergence increases.

The third observation was already made in the context of Figure 1. The
first and second observations are also broadly compatible. When convergence
is 100%, peak employment is reached with a kick-start in 4 sectors: as
before, the diversified, multi-technology cluster does best when technologies
converge. But when convergence is low (25%), the best initial conditions
are to apply a kick-start in one sector only —the “home” sector indeed. With
little convergence there is little cross-sector positive feedback, and congestion
effects set in sooner in multi-technology clusters.
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Table 3 summarises these results across all sectors. For sectors 1-5, the
right number of sectors in which to apply a “kick-start” is 4 or 5 —while in
sector 7 (software) and sector 6 (services) the number is smaller.

For each sector, the employment levels achieved with 100% convergence
and when the optimum number of kick-starts is given are normalised at 100.
The table then shows how the employment level reached declines as the
convergence parameter is reduced (to 75% and 50%), and if “kick-starts” are
administered in only one sector (IV = 1) or in all sectors (N = 8). What
this shows is that the employment levels reached in sectors 4 and 5 are very
sensitive to the value of the convergence parameter, and in sectors 1, 2, 3
and 7, there is a fair degree of sensitivity. It is also clear that in sectors
1, 4 and 7, a kick-start in all sectors is seriously counter-productive, with
ultimate employment much reduced because congestion effects start to limit
the growth of the sector quite early on. Sectors 4, 5 and 7, on the other
hand, will not flourish in isolation: the employment levels reached when
only one “kick-start” is given in their own sector, is much less than the
maximum attainable.

The right-hand side of the table also shows the optimum set of “kick-
starts” for each sector and convergence rate. If a 1 is shown, then a kick
start is required in that sector; if not, then it is not. In all cases, the optimum
kick-start for sector 7 (say) requires a kick-start in that sector 7. These are
shown in bold. The last row of the table (Frequency) shows the number of
times that a kick-start is required in sector ¢ to achieve an optimum outcome
in another sector j. (The fact that a kick-start is required in ¢ to achieve the
optimum result in ¢, is not counted.) Sector 5 (peripherals) emerges as the
sector most in demand: for the six other sectors shown (1-4 and 6-7), and the
three convergence parameter values considered, a kick-start is desirable in
this sector in 10 out of 18 cases. The system sector (8) is also in demand. This
means that the most successful performance in other sectors will be observed
in clusters where the peripherals sector is at least reasonably strong. On
the other hand, communications (sector 1), chips (sector 2) and distributors
(sector 4) are less in demand. Clusters weak in these three sectors are less
likely to see other sectors suffer as a result.

6. CONCLUSIONS

The main implication of these simulations, therefore, is that the performance
of a particular sub-sector of the computing industry at a particular cluster
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depends on both the diversity of the cluster (does it specialise in one
technology, or is it multi-technology) and the degree of convergence between
the different computer technologies. When technologies have not converged,
so that positive spillovers between different sub-sectors are limited, then
the single- technology cluster outperforms the multi-technology cluster,
essentially because in the latter (multi-technology) case, congestion starts to
restrain growth in one sub-sector earlier that in the former (single-technology).
When the technologies converge, on the other hand, the multi-technology
cluster outperforms the single-technology cluster because the former exploits
the inter-sectoral spillovers that the latter cannot have. There is however an
optimum number of sectors: if a cluster starts with strengths in all sub- sectors
of the industry, then congestion sets in too soon to allow full development
of any one of these sub-sectors.

To return to the title of the paper, we see a cycle whereby single-technology
clusters grow most rapidly when there is little or no convergence, but when
technologies start to converge and congestion emerges in early-established
clusters, the most successful clusters at a later stage may be multi-technology,
and the single-technology cluster declines in relative importance.

In a related paper, Swann and Prevezer (forthcoming) compare the
clustering dynamics of computing and biotechnology in the USA . We
have not yet attempted to develop the simulation model presented here for
the biotechnology case. Our conjecture is that because the cross-sectoral entry
attractor effects are weaker at this time in biotechnology than in computing,
the single-technology cluster may be quite competitive in that industry. The
strength of the science base seems to be the most important factor in attracting
entry in the case of biotechnology, but this may reflect the fact that relatively
speaking biotechnology is in its infancy 4. Moreover, our research suggests
that the congestion effects are not likely to be as important in biotechnology
yet. But if the different parts of that industry start to converge in the same
way as modelled here, then the multi-technology cluster may become the
most competitive in biotechnology too.

Notes and references

1. See Swann (1993) for an illustration.
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the other simulation results were plotted on the graph, the points would lie below the
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Abstract

This paper analyzes the basic features of technical and distributional
changes in the US since the Civil War as the expression of the
gradual emergence of a new paradigm, corresponding to a Managerial
Revolution, and its replacement of the earlier organization inherited
from the Industrial Revolution. A stochastic model of technical change
of evolutionary inspiration is presented that accounts for the profiles
of technology and distribution, within each paradigm. (Innovation
is random, and new techniques. are selected depending on their
profitability). By averaging the two sectors of the productive system
corresponding to each paradigm, it is possible to reproduce the
historical trends for each variable. For example, the model explains
why the productivity of capital and the profit rate displayed successively
downward, upward, and downward trends over the three subperiods,
1869-1910, 1910-1950, and 1950-1992. Both the emergence and erosion
of the favorable features of the intermediate period, 1910-1950, are
explained by the diffusion of the new paradigm.

Résumé

Cette étude analyse les caracteres fondamentaux des changements de
la technique et de la répartition aux Etats-Unis depuis la Guerre
de Sécession, comme Dexpression de I’émergence progressive d’un
nouveau paradigme, correspondant & une Révolution Managériale, et
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