Revue Internationale de AFSCET

ISSN 0980-1472

Revue Internatigljgl%.]%g
ST

..—"‘""_FH-H-FF'—

. %@@@ Revue
@@ Internationale
de Sytémique

volume 11, numéro 1, pages 11 - 29, 1997

Bayesian Analysis of tree-strutured categorized data

Jean-Marc Bernard

Numérisation Afscet, mars 2016.

Vol. 11, N° 1, 1997 @

Creative Commons

afcet DUNOD



L

REVUE INTERNATIONALE DE SYSTEMIQUE
Vol. 11, N° 1, 1997, pp. 11 2429

BAYESIAN ANALYSIS
OF TREE-STRUCTURED CATEGORIZED DATA*

Jean-Marc BERNARD !

Résumé

Le modele probabiliste bayésien, actuellement largement utilisé en
psychologie cognitive, est connu des statisticiens en tant qu'une méthode
d’inférence statistique : [’inférence bayésienne. nous présentons ce
second point de vue en considérant le probléme de ’analyse de données
catégorisées présentant une structure d’arbre. L’approche bayésienne
fait intervenir des distributions de Dirichlet dont nous donnons les
principales propriétés et, en particulier, une propriété d’indépendance
qui fait intervenir la structure d’arbre, et qui justifie I’approche de
Iinférence spécifigue. Nous discutons le choix de la distribution initiale
dans le cadre non-informatif, et la structure d’arbre suggére une
solution particuliere : initiale standard. Enfin, I’analyse d’un exemple
de données séquentielles provenant de 1’éthologie permet d’illustrer
certains avantages décisifs de I'inférence bayésienne pour analyser des
données.

Abstract

The ‘Bayesian probabilisitic model, widely used by cognitive
psychologists, is known to statisticians as a method of statistical
inference: Bayesian inference. We present this latter viewpoint by
considering tree-structured categorized data. The Bayesian approach
involves Dirichlet distributions, of which we give the main properties
and, in particular, an independence property, related to the tree-structure,
which provides a justification to the specific inference approach. We
discuss the choice of the prior adopting a non-informative viewpoint,
and the. tree-structure guides us to a particular solution: the standard
prior. Finally, the analysis of an example of sequential data from the
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12 J.-M. BERNARD

field of ethology enables us to illustrate some decisive advantages of
Bayesian inference for analyzing data.

I. INTRODUCTION

Probabilistic models meet an increasing interest amongst cognitive
psychologists and Al researchers. Within this context, the Bayesian model,
named after the clergyman Thomas Bayes because of his famous “Bayes’
theorem”, is a particularly privileged model. Fundamentaly, the Bayesian
model is a cumulative probabilistic model: the initial state of knowledge
of the “system”, which is expressed by means of probabilities, is updated
into a final state of knowledge, by the taking into account of one or several
“observations” issued from the “world”; in its turn, this final state becomes
the new initial state, that could be updated by some future observations.
The strength of the Bayesian approach, as clearly advocated by De Finetti
(1974, 1975), is that it provides a coherent means of updating the “system” ’s
probabilities through observable events.

Within the context of Statistics, this model is the foundation of Bayesian
inference, in which the “observations” are statistical data, the “system” is the
statistician, iLe. the one who analyzes the data, and the initial and final states
are described respectively by a prior and a posterior probability distribution.

Because of what preceeds, the Bayesian approach is an important object
of study for both psychologists and statisticians, and what is presented
in this paper may be considered, either as a learning probabilistic model,
or as a statistical method of inference. In the following, we shall only
adopt this latter viewpoint by considering Bayesian inference for categorized
data that are underlied by some hierarchical tree-structure. But, from the
former viewpoint, that we shall leave aside here, most of what follows has
profound connections with the problem of the probabilistic modelling of
human categorization (see, e.g., Anderson, 1991).

The current existing methods of statistical inference may be grouped into
two major classes: the frequentist methods, from which significance tests and
confidence intervals are derived, and the Bayesian methods. Because of the
known limitations of the frequentist methods—they do not provide answers
to some questions that are quite natural—, more and more statisticians are
led to envisage the Bayesian methodology as a necessary complement. From
the statistical viewpoint of analyzing data, one crucial issue, within the
Bayesian approach, is that of specifying an “initial state of knowledge of the
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statistician” which can be considered as “neutral” or “vague” enough, in such
a way as providing a final state which conveys solely the information brought
by the data, and, thus, in such a way as confering an “objective” status on
this final state of knowledge. We have deliberately set the words “neutral”,
“vague” and “objective” within quotes in the previous sentence, because this
goal is not as simple as it might sound and it has led to much work, debate,
and proposals, including the non-informative approach of Jeffreys (1961) and
the more recent reference approach of Bernardo (1979) and Bernardo and
Smith (1994).

The high desirability of the use of Bayesian non-informative methods within
the context of ANOVA, was particularly stressed by Lépine and Rouanet
(1975), Rouanet and Lecoutre (1983) and Rouanet (1996). Following this
line, we investigated similar methods for categorized data (Bernard, 1986;
Bernard, 1991), with a particular focus on structured data, i.e. the analysis
of complex designs. It appears that this framework can be easily extended to
tree-structured data. For the analysis of categorical data, within the Bayesian
approach, the “multinomial-Dirichlet” model plays a central role. This will
be the main concern of this article. Further, we shall also be particularly
concerned here with the properties of this model when considering that the
data are underlied by some particular tree-structure.

This paper is organized as follows. Section II, defines tree-structured
categorized data and the concept of measures on a tree. Assuming that
the data are a random sample from a multinomial population, the usual
Bayesian approach, that involves Dirichlet prior and posterior distributions,
is presented in Section III. Section IV gives some basic properties of
Dirichlet distributions, and Section V describes an important independence
property related to the tree-structure of the data; some of the methodological
implications of this property are emphasized, and related literature is briefly
reviewed. In Section VI, we discuss the choice of the prior distribution for
the purpose of analyzing data, which leads us to a “standard prior” for
tree-structured data. Finally, Section VII presents an example of ethological
sequential data that is analyzed by the proposed methodology.

11. TREE-STRUCTURED CATEGORIZED DATA

IL1. Tree representations: an example

Let us take, as a first example, a simple experiment in which n subjects
are tested on three successive occasions or trials, each trial having only two
possible outcomes: a success (S) or a failure (F). When a failure occurs,
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the subject cannot be tested any further. This design can be represented by
the tree-structure of Figure 1.

Figure 1. A design involving four basic categories, from three successive “success-failure”

(S-F) trials, represented with its tree-structure; each level of the tree corresponds to one trial.

Another way to describe this design would be to only consider the leaves of
the preceding tree, i.e. the four basic categories into which any subject must
fall: $SS, SSF, SF, or F. Both descriptions may be envisaged, but adopting
the tree-structure representation stresses that some of the basic categories may
be lumped together preferentially, or alternatively, that the data analysis will
focus on some specific conditional frequencies. In brief, the tree-structure
might either be dictated by the design structure itself, or be suggested by a
specific question asked to the data. Whichever the case is, we shall consider,
in the following, that the set of categories and their tree-structure are both
given and fixed, and proceed from that point onwards.

I1.2. Trees

A partial-order relation “>” (“covers”) on the set T' defines a tree if the
associated graph is connected, without cycles, and such that any pair of
elements have a supremum. One element covers all the other elements: the
root. The relation *“>” partitions the set 7" into two subsets: N, the nodes, i.e.
the subset of elements that cover some other elements (they appear as filled
circles in figures); U, the leaves, i.e. the subset of elements that do not cover
any element (they appear as empty circles in figures).

In terms of categorized data, the set U represents the K basic observable
categories, and N the privileged lumpings. From now on, the example of a
categorized variable Us, with K = 5 categories, with two privileged lumpings,
will be taken as a typical example that we shall use illustratively throughout
this article (see Figure 2). It is convenient to label w, uq, etc., the leaves,
and to label 1934 a node that covers leaves s, uz and uy.
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U12345

Us

us U4

Figure 2. Example of a tree underlying the set of K =5 categories Us; leaves are
labeled wy, us, us, w4, Us, and nodes w434, U234, including the root w19345.

I1.3. Measures on a tree

For the purposes of this paper, we need to consider several measures on
the set U, for instance the observed counts ¢ = (a”\f)}\:e[l,.‘,,l{] of a sample
of size n, or the corresponding observed frequencies f = (fi)re(1,..., ], With
fr = ap/n. Any measure can be extended to a tree T underlying U in
an obvious additive way: the measure-value for a node ¢ € N is the sum
of measure-values of elements of U covered by ¢. These measures, when
extended to tree 7', will be noted ar or fr, and the value of ap for node
U234 will be noted 19234.

Two types of measures are involved when analyzing categorized data:
Sfrequency-measures, e.g. fr, that are always normalized (froor = fi2345 = 1),
and force-measures, e.g. ar, that are not necessarily so '. When considering
a sub-tree- 7" of a larger tree T, as we shall do in what follows,
force-measures are simply restricted to the sub-tree, whereas frequency-
measures are normalized. When a normalization occurs for a sub-tree, the
frequencies are conditional frequencies, or transition frequencies, noted e.g.

;")“ = fz/f234-

IIl. BAYESIAN INFERENCE

The basic observable categories are the K leaves, so that the inferential
model, including the sampling model and the prior distribution, may be
stated on the set U only.

Let us consider that the data consist of a random sample of n
observations from an infinite population and that each observation falls
into one of the K = 5 categories of Us = {ui, us2, us, 4y, us}. This
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defines a multinomial sampling model for the categories counts « =
(a1, az, a3, @y, as) conditionally on the population parameters: the parent
or true frequencies ¢ = (1, Y2, W3, @4, ©5), With > @ = 1:

alp ~ MN (n, ). (H

Bayesian inference requires the introduction of a prior distribution on ¢,
which is the probabilistic expression of the knowledge about ¢, prior to the
data. For multinomial data, we choose, as is usual, the prior distribution in
the family of Dirichlet distributions — the conjugate fumily for multinomial
sampling. A Dirichlet distribution D («¢) depends on K hyperparameters, one
for each category: a = («v, qva, vz, vy, xs). If the prior on ¢ is chosen
D (), Bayes’ theorem leads to a Dirichlet posterior distribution D (a + «)
on o|a:

alp ~ MN (n, )
and =  ypla~D(a+ ) 2)
@~ D (&)

The hyperparameters « are called prior (or initial) forces, and v = Y, «,
the total prior force. Similarly, the observed counts a are called the observed
Sorces and n the total observed force. These two kind of forces are combined
in an additive way, through equation (2), to give the posterior (or final)
forces a + .

Seen as a learning model, Bayes’ theorem can be expressed in the following
way: the initial state of knowledge about the unknown parameters ¢, specified
by the prior distribution, is updated by the data, thus giving the posterior
distribution. This updating is quite simple here, since it just amounts to
adding, for each category wuy, the corresponding observed force (ay) to the
prior one (), to get the posterior force (aj + ay).

The posterior distribution, ¢|a ~ D (a + «), is the basic result of the
Bayesian approach, from which all relevant inferential statements are drawn.
Of course, for this distribution to be fully specified, it is necessary to choose
some particular prior forces «; this issue will be discussed in section 6.

In this section, we have introduced some new measures on set U. Let us
summarize the several measures in presence and their respective roles. The
observed frequencies, f, represent a known frequency-measure, determined
by the force-measure a. The true frequencies, ¢, represent an unknown
frequency-measure, the knowledge on which is expressed probabilistically
by means of a Dirichlet distribution characterized by some force-measure,
«v prior to the data, and a + « posterior to the data.
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Figure 3. Example of a Dirichlet distribution D («), with ¥ = 3 and o = (10, 8. 6); the leftmost
point of the simplex corresponds to w = (1, 0. 0), the frontmost point to = (0, 1, 0), and the
rightmost point to © = (0, 0, 1).

1V. DIRICHLET DISTRIBUTIONS

As may be seen from equation (2), the state of information on ¢ is
at both stages, prior or posterior, conveyed by some particular Dirichlet
distribution, so that these distributions require our particular attention. Let us
consider a distribution D (cv), where « represents either the prior forces or
the posterior ones. The Dirichlet distribution is the multivariate generalization
(K categories) of the Beta distribution (2 categories). Its major properties may
be found in Wilks (1962). The density of the Dirichlet distribution D (),
e > 0, with total force v = > vy, is defined over the (K — 1)-dimensional
simplex (because of the constraint Y ¢, = 1) by,

M) = —_HFF(Z)M [T e 3

The mean of the Dirichlet distribution is solely determined by the relative
forces of the categories, ‘. /v, but its dispersion mainly depends on the total
force v the larger v is, the more concentrated the distribution is. Figure 3
gives an example of a Dirichlet distribution for K = 3, o = (10, 8, 6)
and v = 24, '
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Two important properties of the Dirichlet distribution will be relevant for
the remaining of this article. They will be stated on the example of a set U
of K = b categories, but are nethertheless general.

Lumping property: When lumping several categories together, e.g. s, U3
and w4, into a single one, the corresponding forces add: (y1, wazs, @5) ~
D (a1, cuasq, @5). Thus, the Bayesian results are compatible with any tree
structure underlying U, so that equation (2) can be rewritten in terms of the
measures extended to the three T : @7 ~ D (ar) and prlar ~ D (ar + ar).

Restriction property: If the inference is restricted to the relative frequencies

of categories wua, u3 and w, only, ie. the conditional frequencies ¢33*,

2%, and 24, then only the corresponding forces need to be considered:
(wg:547 (703347 (10.2134) ~ D (“27 X3, Q4)-

V. AN INDEPENDENCE PROPERTY OF THE DIRICHLET DISTRI-
BUTION

As we said earlier, considering that data are tree-structured, according to
tree 7', indicates that the analysis focusses on some conditional frequencies

associated with tree T'. The definition of the conditional frequencies of interest

can be described by means of the operation of “cutting” a tree at some of
its nodes.

V.1. “Cutting” a tree

The node-cutting operation of T' at a particular node ¢ splits the tree into

two sub-trees. The upper sub-tree, T, contains the initial root; ¢ becomes a
leaf of T'; the measures associated with 7" remain unchanged, apart from their

restriction to the sub-tree. The lower sub-tree, T, does not contain the initial

root and ¢ becomes its new root; The force-type measures, ar and cr, remain
unchanged, while the frequency-type measures, fr and g, are normalized.

Figure 4 gives the example of the tree T' of figure 2 cut at node us34 and -

the two resulting sub-trees, T and T, for both of which we have displayed
the associated measures « and .
V.2. An independence property
THEOREM 1. — For a node-cutting operation on tree T, spliting T into T
and T, and if, o7 ~ D (ar), then,
(a) oz ~ D (o)
(b) or ~ D (ag) 4)
() ez L or
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Q234 1

o)
b\l
-G
I~

A8 o ot

Figure 4. Cutting the tree of figure 2 at node uzsq: (i) the two sub-trees, T and T, after cutting,
£ £
with the associated force-measures oo and o T and (i) the same sub-trees, with the associated

Sfrequency-measures i and ST

As can be seen, (a) is simply a restatement of the lumping property, as well
as (b) is a restatement of the restriction property. The (c¢) part is the new
interesting result: it expresses that the two distributions of 5 and @ are
independent 2. The next theorem follows from the recursive use of theorem 1.

THEOREM 2. ~ Let N’ be a subset of N, with |N'| = p. The p node-cutting
operations performed at every node of N’ transform the Dirichlet distribution
over the parent frequency-measure @p, into (p+ 1) independent Dirichlet
distributions over the frequency-measures w7 on the (p+ 1) sub-trees T’
obtained.

Applied to the example of figure 2, for N’ = {uj234, U234}, theorem 2
leads to the three following independent distributions:

(p1230, @5) ~ D (1234, cv5)
(01, @331") ~ D (0u, o) ®)
(037, 3%, 93%) ~ D (o, v, )

How can we express in words what theorem 2 states ? One aspect is that
it basically describes an inheritance property of the multinomial-Dirichlet
model. We first started by setting a general multinomial-Dirichlet model on
the overall tree, and we find out here that, when considering solely any local
or specific level, i.e. some sub-tree, we have, in fact, a local model which has
a similar mathematical expression: it still involves a Dirichlet distribution,
dealing with forces and frequencies that have been respectively restricted or
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normalized. Further, theorem 2 also expresses that such a local model can
be, because of independence, disconnected from the rest of the tree, so that

the expression “cutting a tree” may really be given its full meaning. We shall

turn back to some implications of that in section V.4.

Let us also notice that theorem 2 does not rely on any assumption about
the tree 1'; it is thus true for amy tree underlying U. For that reason, one
may say that Dirichlet distributions are, in some way, “in harmony” with
tree-structures.

V.3. Related literature

The Dirichlet distribution can be characterized in terms of independence k
properties (Darroch, Ratcliff, 1971; Fang, Kotz, Ng, 1990, ch. I; Mosimann, -
1962). In Lindley (1964), a particular case of theorem 2 is given for the case

of contingency tables.

Connor and Mosimann (1969) put forward the concepts of neutrality and
of complete neutrality. Though these authors do not refer to trees nor to tree-
structures, each of these two notions may actually be defined by considering

a particular set of node-cutting operations on a particular tree, for which

theorem 2 holds. The Dirichlet distribution is thus “highly neutral” since,

as we previously noticed, theorem 2 holds for any tree and any set of

node-cutting operations.

In fact, all independence properties of the Dirichlet distribution found in
the literature are several viewpoints on the fundamental property expressed
by theorem 2. The explicit use of tree-structures, that was not envisaged in

previous work, provides a unifying framework for all these previous results.

V.4. Methodological implications

Specific inference: Let us consider that some question of interest bears on

a particular conditional frequency, #, within a larger tree-structured design,

and that the observed value of that frequency is: ¢ = a/(a + b), were a and b

are two observed counts. From the lumping and restriction properties only,
the posterior distribution of ¢ is Beta (a + «, b+ (), where « and (3 are two
prior forces determined by the overall prior distribution. From the overall
dataset, only the relevant data, « and b, are involved. The independence
property tells us more: the state of knowledge about # does not depend on
the value of any other conditional frequency appearing at another level of the

tree. Thus theorem 2 is a justification for the “specific inference approach”

BAYESIAN ANALYSIS OF TREE-STRUCTURED CATEGORIZED DATA 21

(Rouanet, Lecoutre, 1983): for a specific question, involving a restricted
number of parameters, instead of ¢, the general model can be replaced by
a specific model including less parameters and less data. The overall tree
will be replaced by the minimal relevant sub-tree. But, the general model
and the specific one will fully agree, ie. give precisely the same posterior
distribution, only if the overall prior and the specific one are “compatible”.
Thus point will be discussed in section VL

Design equivalence: Theorem 2 shows a technical equivalence between
the analysis of sequential data and the analysis of data collected according
to a design with independent groups. Let us come back to the example of
successive “success-failure” trials of section 2.1. In order to compare the
“frequency of success in trial 1”7 with the “frequency of success in trial 2
after a successful first trial”, the two following designs could be envisaged
by an experimenter:

() One single group of subjects is tested on the first trial; the remaining
successful subjects are then tested on the second trial.

(b) A first group of subjects is tested on the first trial. A second group
of subjects goes through a selection phase: only subjects that are successful
on the first trial are kept; these subjects are then tested on the second trial,
being the experimental stage.

According to theorem 2, for the question of interest considered, these two
designs are to be treated in exactly the same way: in either case, the two
frequencies of interest follow independent Beta distributions. (Let us recall
that a Dirichlet distribution bearing on two categories is a Beta distribution.)
Again, the only difference might come from the selection of incompatible
priors for the two situations.

VL. SPECIFYING THE PRIOR DISTRIBUTION

All results given so far are general and valid whatever the prior distribution
D (). How should this one be chosen? We shall only answer this question
by adopting the data analysis approach, in which the goal of the analysis
is to bring out the information on the unknown true frequencies ¢ that is
provided by the data only, without taking into account any possible external
or previous information. This amounts to choosing a prior formalizing an
initial state of “ignorance”.

A considerable amount of work has been devoted to the search of a suitable
ignorance prior for categorical data (see e.g. references in Bernardo, 1979). All
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proposed priors lie between D (0), i.e. o = 0 for all £, (Haldane, 1948) and
D (1) (the Bayes-Laplace solution), including D (1/2) the Jeffreys’ (1961)
indifference prior, and D (1/K) proposed by Perks (1947). These various
solutions differ very little, in terms of the posterior distribution, when the
number of categories K is small relative to the sample size n.

For the general model and a specific model to coincide, for any specific

inference, the only possible prior is Haldane’s D (0). Despite this strong
argument in its favor, this solution is not satisfactory for the case of small
counts or unobserved categories (some a;, are 0), as it then leads to inferential
statements that are too “data-glued”. On the other hand, in Jeffreys’ and
Bayes-Laplace solutions, the total prior force depends on the number K of
categories, so that undesirable properties appear when lumping or splitting
categories. Perks’ solution overcomes this problem by fixing the total prior
force to ¥ = 1 and by sharing it evenly among the K categories.

The previous solutions are suited for the case of symmetrical categories, as

they all give the same prior force to each category. The case of asymmetrical

categories has, comparatively, less been considered. In the reference prior as
defined by Bernardo (1979) and Berger and Bernardo (1992), asymmetry is
introduced by distinguishing, among the ¢y, the parameters of interest from
the nuisance parameters; the proposed solution amounts to adopting what we
called earlier the “specific approach” with a Jeffreys’ prior, D (1/2), on the
leaves of the relevant sub-tree.

This last solution, though, does not take into account the tree-structure -

of the relevant sub-tree itself. This is the reason why we suggest the use
of the following standard prior defined as an adaptation of Perks’ (1947)

solution: the total prior force » = 1 is put onto the root of the tree, as in

Perks” prior, and is evenly split among the elements just covered by the root;
for a node-element, this force is then split again onto the next level of the

tree; this process is applied recursively until all leaves have been reached

(see Figure 5). Finally, if the inference focuses on a restricted number of
parameters, the specific inference approach is adopted: the minimal sub-tree
containing all parameters of interest is considered, and the prior, as defined
previously, is specified on this relevant sub-tree only.

Instead of focusing on the selection of one single prior, an alternative

solution is to consider a ser of admissible ignorance priors. We recently -

suggested this idea of an ignorance zone for the case of binomial data
(Bernard, 1996), while parallelly Walley (1996) was proposing an imprecise
Dirichlet model (IDM) for multinomial data. In the IDM with fixed total prior

force v, prior ignorance is formalized by the set of all Dirichlet priors D (<)
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Q12345 =1
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0’5—5
Q1 = g (g34 = 3
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az = 13 ) Q4 = 33
0’325

Figure 5. The standard prior for U underlied by the tree Ty
the total force v = 1 is evenly split at each level of the tree.

satisfying: Yk, a, > 0 and >~ a; = v. Such a set of priors, that we shall
denote ID (v), leads, for each inference, to an interval for the associated
probability, instead of a single probability value. When v is small (the value
v = 1 is a typical choice) and if the data size » is not too small, the lower
and upper probabilities of an inferential statement of interest will generally
be not too far apart, so that valuable inferences may be drawn.

In any case, no particular prior should be thought as the good solution, but
rather as a reasonable solution that “have a minimal impact on the Bayesian
analysis when compared with the impact provided by the data” (Berger,
Bernardo, 1992, p. 26). We think that, if a single prior is to be chosen, the
standard prior defined above is a quite reasonable solution for the case of
tree-structured data that is our concern in this article. As a complement, we
suggest that several of the previously described priors should be used, and
corresponding results compared, in order to ensure that the conclusion is little
affected by the prior’s choice. In this respect, one possible recommandation
is to use the IDM ID (v = 1) which defines an ignorance zone including
both the standard and Perks’ priors.

VII. APPLICATION TO THE “ANTS” DATA

The approach presented in the preceding sections has already been applied
to sequential data for the study of the predatory behaviour of an earwig (see
e.g. Bernard, Blancheteau, Rouanet, 1985).

The following data have been communicated to us by Fresneau (1994) and
deal with the survival of a colony of ants. The insects have been observed for
several days, and the number of exits from the nest have been recorded for
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each insect. It is assumed that the insects died during their last recorded exit.
“Death” and “survival” are respectively designated by, | and I for the first
exit, 2 and I for the second one, etc. The data for 162 ants and the first seven
exits are shown in figure 6. One question of interest is to study the evolution
of death-rate according to the number of the preceding successful exits.

Figure 6. The ants swrvival data for the first seven exits. Out of 162 ants who exited at least once,
49 exited only once and 113 more than once, etc. After seven exits, only 47 ants survived.

‘The successive death-rates correspond to transition frequencies associated
with the tree of figure 6; the observed death-rates are given in table 1.

Descriptively, the death-rate appears to be much larger on the first two.
exits, than on the following five ones. The average death-rate on the first:

two exits is ¢, = 27.5%, to be compared with 5 = 11.1% for the next
five, so that the observed difference between t; and t», dope = 16.4%,

is important. In the following, we shall focus on the property of interest,

according to which the difference is greater than 10%. The property is true

for the observed difference: d,y, > 10%. The goal of the inferential analysis:

is to assess whether this property also holds for the corresponding true
difference 6 : & > 10% ? The Bayesian way of answering such a question is

straightforward as it simply amounts to calculating the posterior probability

of the property of interest, i.e. Prob(6 > 10%).
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Tuble 1. Observed death-rates in Se for the first 7 exits:
f1 = 49/162 = 30.2%, £ = 28/113 = 24.8%. etc.

N , [ e[ 11 JAY A VT
fi U 3 14 fs fe Iz

302 24.8 8.2 9.0 113 15.9 13

According to theorem 2, the joint distribution over the true death-rates, i.e.
the transition frequencies (o1, @8, @il ..., ©¥1), can be easily determined:
each of these frequencies is distributed Beta and all are mutually independent.
The parameter of interest 4 is defined as a contrast between these transition
frequencies:

§=(pr+e5)/2— (o5 + i + ..+ ol )/5 ©)

Using a standard prior, as defined in section 6, the mean and variance
of the posterior distribution for ¢ are easily found to be: mean = 0.164
and var = 0.0322; the standard posterior distribution is shown in figure 7.
Due to the finite range of ¢, we can approximate its distribution by a Beta
distribution with same mean and variance (an exact algorithm could be used
instead, of course). From this posterior distribution, we get the statement,
Prob(s > 10%) = 0.978, thus assessing the largeness of the true difference
with a good guarantee. If, instead, we choose one of the usual symmetrical
ignorance priors, Prob (6 > 10%) becomes: 0.976 with a D (0), 0.973 with
a D(1/K), 0961 with a D (1/2) and 0.938 with a D (1). Last, with an
imprecise Dirichlet prior /D (v = 1), the required probability belongs to the
interval [0.969; 0.980]. The sensitivity to the choice of the prior is seen
to be moderate though not negligible. However, in any case the required
probability can be assessed to be greater than 0.938: from the sample of 162
observed data, the property of interest (d.,, > 10%) can thus be extended to
the population (6 > 10%) with a guarantee of, at least, 0.938.

For a weaker statement such as & > 7.5%, each of the preceding priors
lead of course to a larger probability than for the previous statement, and all
of these probabilities range from 0.990 to 0.998. So, in this case, the impact
of the choice of the prior is of no practical importance.

If it is preferred to compare the average death-rates ¢; and ¢, through their
ratio, rather than through their difference, the Bayesian approach is again
straightforward: the observed ratio 7,4, = #1/ts = 2.48 presents the property
Tobs > 1.5, which, using a standard prior, may be extended inferentialy with
a good guarantee, as we have Prob(p > 1.5) = .998.
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Prob(6 > 10%) = 0.978

] | I |
0.10 0.15 0.20 0.25

Figure 7. Posterior distribution of & obtained with a standard prior;
the region for which & > 10% has a probability of 0.978.

VIII. CONCLUSION

We would like to conclude by some general remarks refering to two : i P ) )
- updating process from a prior prediction to a posterior prediction through

different, though related, aspects of the present paper: The first ones, are
about the statistical use of the multinomial-Dirichlet model, and the second
ones, about some extensions that enable its use within the context of cognitive
psychology.

As a statistical method, the multinomial-Dirichlet model is a simple

powerful tool for the Bayesian analysis of categorized data. It is highly
general since it makes no assumption about the population from which data
are sampled, apart from stating that the population is characterized by a fixed,
though unknown, set of frequencies .

Theorem 2 is an important property of this model. First of all, it expresses

the fundamental “inheritance” property of the model. Whichever level of
analysis is adopted, general or specific, the model takes the same mathematical
form: At both of these levels, any state of knowledge —prior or posterior—is
described by a Dirichlet probability distribution.

Secondly, we have pointed out that theorem 2 does not make any
assumption about how categories are structured, so that it applies to any tree-
structure (and possibly to several ones), thus allowing us to say that Dirichlet
distributions are in “harmony” with trees. Finally, a major consequence of

theorem 2, at the statistical level, is that it justifies the specific inference
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approach which consists of solely modeling a sub-tree of interest rather than
the overall tree. One can easily perceive the deep (and quite reassuring)
meaning of that last point: it ensures that, as far as multinomial data are
concerned, one is allowed to say something about a specific aspect of reality
without having to look at it all at once *.

The example analyzed in section 7, with its associated rather complex
property of interest, has given us the opportunity to stress the extremely
powerful nature of the Bayesian approach, which is not shared by the
frequentist approach: it enables to extend any descriptive conclusion into
the corresponding inductive one, by providing straightforward answers to
questions of the following type: “In the light of some observed data having
some property of interest, may the property be generalized to the population
from which data were sampled ?”

Though it was not discussed in the paper, it is worth mentionning that
the Bayesian approach also provides a predictive answer to such questions:
instead of focusing on statements about the population, the inference then
deals with a possible future set of data.

“Going from observed events to a prediction about future events” is
the very essence of the Bayesian paradigm, which basically involves an

already observed events; these predictions are expressed by probabilities and
Bayes’ theorem guarantees their overall coherence. This viewpoint has been
particularly emphasized by De Finetti (1974, 1975) and Bernardo and Smith
(1994).

As we have indicated in the introduction, the goal of “analyzing data”
requires to consider an initial state of knowledge that may be considered as
formalizing prior ignorance.

This view corresponds to a learning process starting “from point 0”. But a
more general view of the Bayesian approach is to envisage any possible initial
state of knowledge. For categorized observations, this might be achieved by
considering a Dirichlet prior with large (greater than one) initial forces oy,
or a prior obtained by a mixture of such Dirichlet distributions.

With this last feature, we already have a quite general probabilistic learning
model. Several other extensions might be envisaged, depending on what is

- being modelled, but we shall just give here a few hints for the modelling

of human categorization.

We have considered, throughout this paper, that the categories and their
tree-structure were given in advance. This restriction needs to be relaxed if
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we want to describe a sequential process where categories, and their possible
structure, is progressively constructed.

Such a process would start from a limited set of pre-existing categories and
should allow, either to create new categories, or to merge or split old ones. We
suggest that, again, theorem 2 will be the key instrument for so doing. The
three basic operations, just mentionned, amount to no more than changing a
previous tree-structure into a new one, and the multinomial-Dirichlet model
will propagates from one tree to the other by simply adding or spliting the
concerned forces. As a matter of fact, the model proposed by Anderson
(1991) involves Dirichlet distributions and already implements some of the
above mentioned ideas, but, without any doubt, more work remains to be
done in this direction.
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